Comparative Genomics and Synteny Analysis of KCS17-KCS18 Cluster Across Different Genomes and Sub-genomes of Brassicaceae for Analysis of Its Evolutionary History

被引:0
|
作者
Neer K. Singh
Saurabh Anand
Aditi Jain
Sandip Das
机构
[1] University of Delhi,Department of Botany
来源
关键词
Brassicaceae; Synteny;
D O I
暂无
中图分类号
学科分类号
摘要
Comparative genomics-based synteny analysis has proved to be an effective strategy to understand evolution of genomic regions spanning a single gene (micro-unit) to large segments encompassing hundreds of kilobases to megabases. Brassicaceae is in a unique position to contribute to understanding genome and trait evolution through comparative genomics because whole genome sequences from as many as nine species have been completed and are available for analysis. In the present work, we compared genomic loci surrounding the KCS17-KCS18 cluster across these nine genomes. KCS18 or FAE 1 gene encodes beta-ketoacyl synthase, (β-KCS) a membrane-bound enzyme that catalyses the key rate-limiting step during synthesis of VLCFAs such as erucic acid (C22) present in seed oil in Brassicaceae by elongating carbon chain from C18 to C22; knowledge on role of KCS17 in plant development is however lacking. Synteny across the genomic segments harbouring FAE1 showed variable levels of gene retention ranging between 26% (Arabidopsis thaliana and Brassica napus C03) and 89% (between A. thaliana and Brassica rapa A01), and gene density ranged between 1 gene/2.86 kb and 1 gene/4.88 kb. Interestingly, in diploid Brassica species, FAE1 was retained in only one of the sub-genomes in spite of the presence of three sub-genomes created as a result of genome triplication; in contrast, FAE1 was present at three loci, with four copies in Camellina sativa which is also known to have experienced a recent genome triplication revealing contrasting fates upon duplication. The organization of KCS17 and KCS18 as head-to-tail cluster was conserved across most of the species, except the C genome containing Brassicas, namely B. oleracea and B. napus, where disruptions because of other genes were observed. Even in the conserved blocks, the distance between KCS17 and KCS18 varied; the functional implication of the organization of KCS17-KCS18 as a cluster vis-à-vis fatty acid biosynthesis needs to be dissected, as the cis-regulatory region is expected to be present in the intergenic space. Phylogenetic analysis of KCS gene family along with KCS17-KCS18 from members of Brassicaceae reveals their ancestral relationship with KCS8-KCS9 block. Further comparative functional analysis between KCS8, KCS9, KCS16, KCS17 and KCS18 across evolutionary time-scale will be required to understand the conservation or diversification of roles of these members of KCS family in fatty acid biosynthesis during course of evolution.
引用
收藏
页码:237 / 251
页数:14
相关论文
共 4 条