Neutrino oscillations are analyzed in an accelerating and rotating reference frame, assuming that the gravitational coupling of neutrinos is flavor dependent, which implies a violation of the equivalence principle. Unlike the usual studies in which a constant gravitational field is considered, such frames could represent a more suitable framework for testing if a breakdown of the equivalence principle occurs, due to the possibility to modulate the (simulated) gravitational field. The violation of the equivalence principle implies, for the case of a maximal gravitational mixing angle, the presence of an off-diagonal term in the mass matrix. The consequences on the evolution of flavor (mass) eigenstates of such a term are analyzed for solar (oscillations in the vacuum) and atmospheric neutrinos. We calculate the flavor oscillation probability in the non-inertial frame, which does depend on its angular velocity and linear acceleration, as well as on the energy of neutrinos, the mass-squared difference between two mass eigenstates, and on the measure of the degree of violation of the equivalence principle (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Delta\gamma$\end{document}). In particular, we find that the energy dependence disappears for vanishing mass-squared difference, unlike the result obtained by Gasperini, Halprin, Leung, and other physical mechanisms proposed as a viable explanation of neutrino oscillations. Estimations on the upper values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Delta\gamma$\end{document} are inferred for a rotating observer (with vanishing linear acceleration) comoving with the earth, hence \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\omega \sim 7\cdot 10^{-5}$\end{document} rad/sec, and all other alternative mechanisms generating the oscillation phenomena have been neglected. In this case we find that the constraints on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Delta\gamma$\end{document} are given by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Delta\gamma\leq 10^2$\end{document} for solar neutrinos and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Delta\gamma\leq 10^6$\end{document} for atmospheric neutrinos.