Optimization for non-linear inverse problems

被引:0
|
作者
Georgi Boyadzhiev
Enrico Brandmayr
Tommaso Pinat
Giuliano F.Panza
机构
[1] Institute of Mathematics and Informatics of Bulgarian Academy of Sciences,
[2] 8 Acad.G.Bonchev STR,undefined
[3] Sofia,undefined
[4] Bulgaria,undefined
[5] Dipartimento di Scienze della Terra,undefined
[6] Università degli Studi di Trieste,undefined
[7] via Weiss 4,undefined
[8] 34127 Trieste (Italy),undefined
[9] Tel. +359 887577075,undefined
[10] Dipartimento di Scienze della Terra,undefined
[11] Università degli Studi di Trieste,undefined
[12] via Weiss 4,undefined
[13] 34127 Trieste (Italy),undefined
[14] Tel.: +39 349 4744808,undefined
[15] Departemant of Earth Sciences (DST),undefined
[16] University of Trieste,undefined
[17] via Weiss 4,undefined
[18] I-34137 Trieste (Italy),undefined
[19] Department of Earth Sciences,undefined
[20] Via Weiss,undefined
[21] 4 and the Abdus Salam ICTP/ESP section,undefined
[22] Head of SAND Group,undefined
[23] I-34127 Trieste (Italy),undefined
[24] Tel.: +39 040 5582117,undefined
[25] Fax: +39 040 22407334 or +39 040 5582111 or +39 040 575519,undefined
来源
RENDICONTI LINCEI | 2008年 / 19卷
关键词
Shear Wave Velocity; Moho Depth; Crustal Layer; Mantle Layer; Adriatic Plate;
D O I
暂无
中图分类号
学科分类号
摘要
The non-linear inversion of geophysical data in general does not yield a unique solution, but a single model representing the investigated field, and is preferred for an easy geological interpretation of observations.
引用
收藏
页码:17 / 43
页数:26
相关论文
共 50 条
  • [1] Optimization for non-linear inverse problems
    Boyadzhiev, Georgi
    Brandmayr, Enrico
    Pinat, Tommaso
    Panza, Giuliano F.
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2008, 19 (01) : 17 - 43
  • [2] Optimization for non-linear inverse problems
    Georgi Boyadzhiev
    Enrico Brandmayr
    Tommaso Pinat
    Giuliano F. Panza
    RENDICONTI LINCEI, 2008, 19 (2): : 209 - 211
  • [3] The concept of distance in global optimization applied to non-linear inverse problems
    Bosisio, A. V.
    Drufuca, G.
    Rovetta, D.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2014, 22 (05) : 683 - 706
  • [4] Linearizing non-linear inverse problems and an application to inverse backscattering
    Stefanov, Plamen
    Uhlmann, Gunther
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (09) : 2842 - 2866
  • [5] Dual regularization in non-linear inverse scattering problems
    Gaikovich, Konstantin P.
    Gaikovich, Petr K.
    Maksimovitch, Yelena S.
    Smirnov, Alexander I.
    Sumin, Mikhail I.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (07) : 1215 - 1239
  • [6] Non-linear inverse problems and optimal design of MEMS
    Chereches, Robert-Leon
    Di Barba, Paolo
    Wiak, Slawomir
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2015, 34 (03) : 608 - 623
  • [7] A new optimization method for non-linear inverse analysis
    Lv Yinghui
    Liu Quansheng
    PROCEEDINGS OF 2009 INTERNATIONAL SYMPOSIUM ON RISK CONTROL AND MANAGEMENT OF DESIGN, CONSTRUCTION AND OPERATION IN UNDERGROUND ENGINEERING, 2009, : 299 - 302
  • [8] Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations
    Yaroslav Kurylev
    Matti Lassas
    Gunther Uhlmann
    Inventiones mathematicae, 2018, 212 : 781 - 857
  • [9] Some efficient methods for solving non-linear inverse problems
    Imre, Emoke
    Berzi, Peter
    Hortobagyi, Zsolt
    Singh, Vijay P.
    Hegedus, Csaba
    Kovacs, Sandor
    Fityus, Stephen
    Computer Methods and Recent Advances in Geomechanics, 2015, : 1637 - 1642
  • [10] A GEOMETRICAL APPROACH FOR THE A PRIORI STUDY OF NON-LINEAR INVERSE PROBLEMS
    CHAVENT, G
    ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, 1987, : 509 - 521