A Note on Lower Bound Lifespan Estimates for Semi-linear Wave/Klein–Gordon Equations Associated with the Harmonic Oscillator

被引:0
|
作者
Qidi Zhang
Lvsi Zheng
机构
[1] East China University of Science and Technology,Department of Mathematics
关键词
Harmonic oscillator; Wave equations; Klein–Gordon equations; Long time existence; 35L70; 35J15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that for almost every m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document}, the solution to the semi-linear Klein–Gordon equation associated with the harmonic oscillator, with small initial data, exists over a longer time interval than the one given by local existence theory, using the normal form method. A similar result for the quadratic wave equation is also obtained.
引用
收藏
页码:171 / 182
页数:11
相关论文
共 31 条