The relationship between optical properties and soluble solid contents of Gong pear for non-destructive internal quality inspection

被引:0
|
作者
Yande Liu
Yuxu Huo
Jun Liao
Yang Lu
Shimin Yang
机构
[1] East China Jiaotong University,School of Mechatronics and Vehicle Engineering
[2] East China Jiaotong University,Institute of Intelligent Mechanical and Electrical Equipment
关键词
Scattering coefficient; Absorption coefficient; Soluble solids content; Different regions of Gong pear;
D O I
暂无
中图分类号
学科分类号
摘要
To investigate the relationship between optical properties and soluble solids content (SSC) in different regions of Gong pear. The optical properties of the upper, middle and lower parts of Gong pear were measured by the single integrating sphere system in the range of 500–1100 nm. The differences of absorption coefficient (μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document}) spectra and reduced scattering coefficient (μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document}) spectra in three regions of Gong pear were analyzed. The differences of μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} and μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} at 670,710, 750, 800 and 980 nm were analyzed. Gong Pear SSC was positively correlated with μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} and μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} in the range of 500–1050 nm.The local model of Gong pear SSC was established based on the μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} spectra and μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} spectra in the upper, middle and lower regions respectively. And the partial least square regression (PLSR) model and support vector regression (SVR) model were established based on the mean μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} spectra, mean μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} spectra and mean μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document}+μs′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{s}^{\prime}$$\end{document} spectra after standard normal variables (SNV) pretreatment. The results showed that the optical properties of the upper, middle and lower sections of Gong pear were less different. Among all established SSC prediction models, the model based on the mean μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu }_{a}$$\end{document} spectra had the best prediction effect. Its correction coefficient of determination (Rc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{c}^{2}$$\end{document}) and prediction coefficient of determination (RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{P}^{2}$$\end{document}) were 0.894 and 0.837, and its correction root mean square error (RMSEC) and prediction root mean square error (RMSEP) were 0.305 and 0.429, respectively. The results showed that soluble solids content mainly affected the absorption characteristics of Gong pear, and the internal quality of Gong pear could be predicted better based on the absorption coefficient.
引用
收藏
页码:2916 / 2925
页数:9
相关论文
共 17 条
  • [1] The relationship between optical properties and soluble solid contents of Gong pear for non-destructive internal quality inspection
    Liu, Yande
    Huo, Yuxu
    Liao, Jun
    Lu, Yang
    Yang, Shimin
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2024, 18 (4) : 2916 - 2925
  • [2] Relationship between Soluble Solid and Soluble Sugar Contents and Optical Properties of Apple Flesh
    Wei, Kangli
    Liu, Chang
    Ding, Haizhen
    Yang, Mingzhe
    Hao, Yajing
    Ma, Chen
    Tu, Kang
    Pan, Leiqing
    Shipin Kexue/Food Science, 2019, 40 (18): : 1 - 7
  • [3] Application of near infrared spectroscopy (NIRS) to non-destructive internal quality inspection of tomato
    Tao, Xuemei
    He, Yong
    FOURTH INTERNATIONAL CONFERENCE ON PHOTONICS AND IMAGING IN BIOLOGY AND MEDICINE, PTS 1 AND 2, 2006, 6047
  • [4] Evaluation of the quality of commercial silicon carbide wafers by an optical non-destructive inspection technique
    Hatakeyama, T.
    Ichinoseki, K.
    Fukuda, K.
    Higuchi, N.
    Arai, K.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (05) : 988 - 992
  • [5] Non-destructive measurement of pear internal quality indices by visible and near-infrared spectrometric techniques
    Yan-De, Liu
    Xing-Miao, Chen
    Xu-Dong, Sun
    Yi-Bin, Ying
    NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH, 2007, 50 (05) : 1051 - 1057
  • [6] Non-Destructive Testing of the Internal Quality of Korla Fragrant Pears Based on Dielectric Properties
    Tang, Yurong
    Zhang, Hong
    Liang, Qing
    Xia, Yifan
    Che, Jikai
    Liu, Yang
    HORTICULTURAE, 2024, 10 (06)
  • [7] Relationship between porcine carcass grades and estimated traits based on conventional and non-destructive inspection methods
    Lim, Seok-Won
    Hwang, Doyon
    Kim, Sangwook
    Kim, Jun-Mo
    JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY, 2022, 64 (01) : 155 - 165
  • [8] Comparison of drilled hole quality evaluation in CFRP/CFRP stacks using optical and ultrasonic non-destructive inspection
    Caggiano, Alessandra
    Nele, Luigi
    MACHINING SCIENCE AND TECHNOLOGY, 2018, 22 (05) : 865 - 880
  • [9] Rapid and non-destructive determination of soluble solid content of crown pear by visible/near-infrared spectroscopy with deep learning regression
    Qi, Hengnian
    Shen, Cong
    Chen, Gang
    Zhang, Jianyi
    Chen, Fengnong
    Li, Hongyang
    Zhang, Chu
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2023, 123
  • [10] Relationship between optical properties and soluble sugar contents of apple flesh during storage
    Wei, Kangli
    Ma, Chen
    Sun, Ke
    Liu, Qiang
    Zhao, Nan
    Sun, Ye
    Tu, Kang
    Pan, Leiqing
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2020, 159