An online learned hough forest model based on improved multi-feature fusion matching for multi-object tracking

被引:0
|
作者
Wan Li
Cheng Wenzhi
机构
[1] Hunan University of Science and Engineering,Experiment & Practice Training Center
来源
关键词
Multiple objects; Hough forest; Color histogram; Similarity measure; Trajectory matching;
D O I
暂无
中图分类号
学科分类号
摘要
Object tracking has been one of the most important and active research areas in the field of computer vision. In order to solve low accuracy in object occlusion and deformation for multi-object tracking, an online learned Hough forest model based on improved multi-feature fusion matching for multi-object tracking is proposed in this paper. Firstly, positive and negative samples are selected online according to low-level association among detection responses and construct the feature model of the object with color histogram, histogram of oriented gradient (HOG) and optical flow information. Secondly, longer trajectory associations are generated based on the online learned Hough forest framework. Finally, a trajectory matching algorithm based on multi-feature fusion is proposed, and we introduce two methods of similarity measure in color histogram and feature points matching based on the Gabor filter to generate the probability matrix with the weighted factor. Therefore, it can further form the complete trajectories of the objects by associating them gradually. We evaluate our approach on three public data sets, and show significant improvements compared with state-of-art methods.
引用
收藏
页码:8861 / 8874
页数:13
相关论文
共 50 条
  • [1] An online learned hough forest model based on improved multi-feature fusion matching for multi-object tracking
    Wan Li
    Cheng Wenzhi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (07) : 8861 - 8874
  • [2] Multi-object tracking by multi-feature fusion to associate all detected boxes
    Bilakeri, Shavantrevva
    Karunakar, A. K.
    COGENT ENGINEERING, 2022, 9 (01):
  • [3] End-to-End Chained Pedestrian Multi-Object Tracking Based on Multi-Feature Fusion
    Zhou, Haiyun
    Xiang, Xuezhi
    Wang, Xinyao
    Ren, Wenkai
    PROCEEDINGS OF 2021 IEEE 12TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2021, : 150 - 153
  • [4] An improved UPF object tracking algorithm based on multi-feature fusion
    Li, Xiao-Xu
    Dai, Bin
    Cao, Jie
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2014, 48 (10): : 1473 - 1478
  • [5] Object tracking based on Camshift with multi-feature fusion
    Zhou, Z. (zhouzhiyu1993@163.com), 1600, Academy Publisher (09):
  • [6] Multi-feature Fusion Based Object Detecting and Tracking
    Lu, Hong
    Li, Hongsheng
    Chai, Lin
    Fei, Shumin
    Liu, Guangyun
    MATERIALS AND COMPUTATIONAL MECHANICS, PTS 1-3, 2012, 117-119 : 1824 - +
  • [7] AN ONLINE LEARNED HOUGH FOREST MODEL FOR MULTI-TARGET TRACKING
    Xiang, Jun
    Sang, Nong
    Hou, Jianhua
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2398 - 2402
  • [8] OBJECT TRACKING VIA ONLINE TRAJECTORY OPTIMIZATION WITH MULTI-FEATURE FUSION
    Ruan, Weijian
    Chen, Jun
    Liang, Chao
    Wu, Yi
    Hu, Ruimin
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 1231 - 1236
  • [9] Kalman Filter-based Multi-Object Tracking Algorithm by Collaborative Multi-Feature
    Lin, Kejun
    Guo, Zhibo
    Yang, Feifei
    Huang, Jian
    Zhang, Ying
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 1239 - 1244
  • [10] Object tracking based on multi-feature fusion and motion prediction
    Zhou, Zhiyu
    Luo, Kaikai
    Wang, Yaming
    Zhang, Jianxin
    Journal of Computational Information Systems, 2011, 7 (16): : 5940 - 5947