High-derivatives and massive electromagnetic models in the Lemaître–Tolman–Bondi spacetime

被引:0
|
作者
Rafael L. Fernandes
Everton M. C. Abreu
Marcelo B. Ribeiro
机构
[1] Instituto Federal de Educação,Departamento de Física
[2] Ciência e Tecnologia da Bahia,Departamento de Física
[3] Universidade Federal Rural do Rio de Janeiro,Programa de Pós
[4] Universidade Federal de Juiz de Fora,Graduação Interdisciplinar em Física Aplicada, Instituto de Física
[5] Universidade Federal do Rio de Janeiro,Instituto de Física
[6] Universidade Federal do Rio de Janeiro,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Maxwell electromagnetic theory embedded in an inhomogeneous Lemaître–Tolman–Bondi (LTB) spacetime background was described a few years back in the literature. However, terms concerning the mass or high-derivatives were not explored. In this work we studied the inhomogeneous spacetime effects on high-derivatives and massive electromagnetic models. We used the LTB metric and calculated the physical quantities of interest, namely the scale factor, density of the eletromagnetic field and Hubble constant, for the Proca and higher-derivative Podolsky models. We found a new singularity in both models, and that the magnetic field must be zero in the Proca model.
引用
收藏
相关论文
共 15 条
  • [1] Erratum to: High-derivatives and massive electromagnetic models in the Lemaître–Tolman–Bondi spacetime
    Rafael L. Fernandes
    Everton M. C. Abreu
    Marcelo B. Ribeiro
    [J]. The European Physical Journal C, 2020, 80
  • [2] High-derivatives and massive electromagnetic models in the Lemaitre-Tolman-Bondi spacetime
    Fernandes, Rafael L.
    Abreu, Everton M. C.
    Ribeiro, Marcelo B.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (03):
  • [3] High-derivatives and massive electromagnetic models in the Lemaitre-Tolman-Bondi spacetime (vol 80, 240, 2020)
    Fernandes, Rafael L.
    Abreu, Everton M. C.
    Ribeiro, Marcelo B.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (06):
  • [4] Dirac Equation in Lemaįtre—Tolman—Bondi Models
    Antonio Zecca
    [J]. General Relativity and Gravitation, 2000, 32 : 1197 - 1206
  • [5] Radial asymptotics of Lemaître–Tolman–Bondi dust models
    Roberto A. Sussman
    [J]. General Relativity and Gravitation, 2010, 42 : 2813 - 2864
  • [6] Study of generalized Lemaître–Tolman–Bondi spacetime in Palatini f(R) gravity
    Mutasem Z. Bani-Fwaz
    M. Z. Bhatti
    Z. Yousaf
    U. Farwa
    Ahmed M. Galal
    [J]. The European Physical Journal C, 82
  • [7] Lemaître-Tolman-Bondi model: Solutions of the cosmological equation
    Antonio Zecca
    [J]. The European Physical Journal Plus, 128
  • [8] Cosmological expansion and local systems: a Lemaître–Tolman–Bondi model
    Ivana Bochicchio
    Valerio Faraoni
    [J]. General Relativity and Gravitation, 2012, 44 : 1479 - 1487
  • [9] Generalized Lemaítre–Tolman–Bondi spacetime under the influence of electric charge and Palatini f(R) gravity
    M. Z. Bhatti
    Z. Yousaf
    F. Hussain
    [J]. The European Physical Journal C, 2021, 81
  • [10] Relativistic cosmology number densities in void-Lemaître-Tolman-Bondi models
    20141017429673
    [J]. 1600, EDP Sciences (563):