Concavity of Condenser Energy Under Boundary Variations

被引:0
|
作者
Stamatis Pouliasis
机构
[1] Texas Tech University,Department of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Capacity constant; Condenser energy; Harmonic radius; Parametric deformation;
D O I
暂无
中图分类号
学科分类号
摘要
Let D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{0}$$\end{document}, D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{1}$$\end{document} be two bounded domains in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, such that D0¯⊂D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{D_{0}}\subset D_{1}$$\end{document} and ∂D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D_{0}$$\end{document} and ∂D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D_{1}$$\end{document} are closed surfaces. Consider a variation of D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{0}$$\end{document} to D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{1}$$\end{document} via a family of smooth domains Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{t}$$\end{document}, t∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in (0,1)$$\end{document}, whose boundaries ∂Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D_{t}$$\end{document} are level sets of a C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{2}$$\end{document} function V on D1\D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{1}\setminus D_{0}$$\end{document}. Let K be an arbitrary compact subset of D0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{0}$$\end{document} and let I(Dt,K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(D_{t},K)$$\end{document} be the equilibrium energy of the condenser (Dt,K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D_{t},K)$$\end{document}. We show that the function f(t):=I(Dt,K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(t):=I(D_{t},K)$$\end{document} is continuously differentiable. In addition, we show that, if V is subharmonic, then f is a concave function. We characterize the cases where f is affine by showing that this occurs if and only if ∂Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D_{t}$$\end{document} are level sets of the equilibrium potential of the condenser (D1,K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(D_{1},K)$$\end{document}. This is a generalization of a result obtained by R. Laugesen [14] when the domains Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{t}$$\end{document} are concentric balls.
引用
收藏
页码:7726 / 7740
页数:14
相关论文
共 50 条
  • [1] Concavity of Condenser Energy Under Boundary Variations
    Pouliasis, Stamatis
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) : 7726 - 7740
  • [2] CONDENSER ENERGY UNDER HOLOMORPHIC MOTIONS
    Pouliasis, Stamatis
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (03) : 1119 - 1134
  • [3] Concavity of energy surfaces
    Karataglidis, S.
    Giraud, B. G.
    PROCEEDINGS OF SAIP2013: THE 58TH ANNUAL CONFERENCE OF THE SOUTH AFRICAN INSTITUTE OF PHYSICS, 2013, : 537 - 541
  • [4] Boundary effects for an electrostatic condenser
    Kühnau R.
    Journal of Mathematical Sciences, 2001, 105 (4) : 2210 - 2219
  • [5] Variations of an EHL film under boundary slippage
    Guo, F
    Wong, PL
    IUTAM SYMPOSIUM ON ELASTOHYDRODYNAMICS AND MICRO-ELASTOHYDRODYNAMICS, 2006, 134 : 285 - +
  • [6] Concavity of entropy under thinning
    Yu, Yaming
    Johnson, Oliver
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 144 - +
  • [7] POWER CONCAVITY AND BOUNDARY-VALUE PROBLEMS
    KENNINGTON, AU
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (03) : 687 - 704
  • [8] Concavity properties for elliptic free boundary problems
    Bianchini, Chiara
    Salani, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4461 - 4470
  • [9] Multiplicity of grain boundary structures and related energy variations
    Hallberg, Hakan
    Blixt, Kevin Hult
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [10] Concavity, Response Functions and Replica Energy
    Campa, Alessandro
    Casetti, Lapo
    Latella, Ivan
    Perez-Madrid, Agustin
    Ruffo, Stefano
    ENTROPY, 2018, 20 (12):