Equivalence group and exact solutions of the system of nonhomogeneous Boltzmann equations

被引:0
|
作者
Yurii N. Grigoryev
Sergey V. Meleshko
机构
[1] Institute of Computational Technology,School of Mathematics, Institute of Science
[2] Suranaree University of Technology,undefined
来源
关键词
Boltzmann equations; Lie group of transformations; Exact solutions; BKW solution;
D O I
暂无
中图分类号
学科分类号
摘要
The article is devoted to the construction of exact solutions of a system of two Boltzmann kinetic inhomogeneous equations. The source functions in the equations simulate the integrals of double and triple inelastic collisions. An extension of the Lie group L4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_4$$\end{document} admitted by the system of homogeneous equations is carried out. In the present paper, the Lie group L4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_4$$\end{document} is considered as an equivalence group for inhomogeneous equations. Conditions are found under which transformations from the extended group vanish the sources in the transformed equations. A class of sources linear in the distribution functions is obtained for which the generalized Bobylev–Krook–Wu solutions hold in explicit form. Physical interpretations are also presented.
引用
收藏
页码:2117 / 2124
页数:7
相关论文
共 50 条
  • [1] Equivalence group and exact solutions of the system of nonhomogeneous Boltzmann equations
    Grigoryev, Yurii N. N.
    Meleshko, Sergey V. V.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2023, 35 (05) : 2117 - 2124
  • [2] EXACT SOLUTIONS TO BOLTZMANN EQUATIONS
    BOBYLEV, AV
    DOKLADY AKADEMII NAUK SSSR, 1975, 225 (06): : 1296 - 1299
  • [3] Exact Solutions of the Boltzmann Equations with a Source
    Yu. N. Grigor’ev
    S. V. Meleshko
    A. Suriyawichitseranee
    Journal of Applied Mechanics and Technical Physics, 2018, 59 : 189 - 196
  • [4] EXACT SOLUTIONS OF THE BOLTZMANN EQUATIONS WITH A SOURCE
    Grigor'ev, Yu. N.
    Meleshko, S. V.
    Suriyawichitseranee, A.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2018, 59 (02) : 189 - 196
  • [5] LINEARIZATION AND EXACT-SOLUTIONS OF A CLASS OF BOLTZMANN EQUATIONS
    MISHCHENKO, AV
    PETRINA, DY
    THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 77 (01) : 1096 - 1109
  • [6] EXACT NONEQUILIBRIUM SOLUTIONS OF THE EINSTEIN-BOLTZMANN EQUATIONS
    MAARTENS, R
    WOLVAARDT, FP
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (01) : 203 - 225
  • [7] ON EXACT-SOLUTIONS OF ONE CLASS OF BOLTZMANN EQUATIONS
    PETRINA, DJ
    MISHCHENKO, AV
    DOKLADY AKADEMII NAUK SSSR, 1988, 298 (02): : 338 - 342
  • [8] Exact Solutions of Generalized Riemann Problem for Nonhomogeneous Shallow Water Equations
    Sueet Millon Sahoo
    T. Raja Sekhar
    G. P. Raja Sekhar
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1225 - 1237
  • [9] EXACT SOLUTIONS OF GENERALIZED RIEMANN PROBLEM FOR NONHOMOGENEOUS SHALLOW WATER EQUATIONS
    Sahoo, Sueet Millon
    Sekhar, T. Raja
    Sekhar, G. P. Raja
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1225 - 1237
  • [10] Equivalence And New Exact Solutions To The Black Scholes And Diffusion Equations
    Sukhomlin, Nikolay
    Ortiz, Jan Marcos
    APPLIED MATHEMATICS E-NOTES, 2007, 7 : 206 - 213