Development of Medical Imaging Data Standardization for Imaging-Based Observational Research: OMOP Common Data Model Extension

被引:3
|
作者
Park, Woo Yeon [1 ]
Jeon, Kyulee [2 ,3 ]
Schmidt, Teri Sippel [1 ]
Kondylakis, Haridimos [4 ]
Alkasab, Tarik [5 ]
Dewey, Blake E. [6 ]
You, Seng Chan [2 ,3 ]
Nagy, Paul [1 ]
机构
[1] Johns Hopkins Univ, Biomed Informat & Data Sci, 855 N Wolfe St,Rangos 616, Baltimore, MD 21205 USA
[2] Yonsei Univ, Coll Med, Dept Biomed Syst Informat, Seoul, South Korea
[3] Yonsei Univ, Inst Innovat Digital Healthcare, Seoul, South Korea
[4] Fdn Res & Technol Hellas FORTH, Inst Comp Sci, Iraklion, Greece
[5] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[6] Johns Hopkins Univ, Dept Neurol, Baltimore, MD USA
来源
关键词
Data collection [MeSH; Data standardization; Observational research; Data integration; Multimodal data analysis;
D O I
10.1007/s10278-024-00982-6
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The rapid growth of artificial intelligence (AI) and deep learning techniques require access to large inter-institutional cohorts of data to enable the development of robust models, e.g., targeting the identification of disease biomarkers and quantifying disease progression and treatment efficacy. The Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) has been designed to accommodate a harmonized representation of observational healthcare data. This study proposes the Medical Imaging CDM (MI-CDM) extension, adding two new tables and two vocabularies to the OMOP CDM to address the structural and semantic requirements to support imaging research. The tables provide the capabilities of linking DICOM data sources as well as tracking the provenance of imaging features derived from those images. The implementation of the extension enables phenotype definitions using imaging features and expanding standardized computable imaging biomarkers. This proposal offers a comprehensive and unified approach for conducting imaging research and outcome studies utilizing imaging features.
引用
收藏
页码:899 / 908
页数:10
相关论文
共 50 条
  • [1] Development and Validation of the Radiology Common Data Model (R-CDM) for the International Standardization of Medical Imaging Data
    Park, ChulHyoung
    You, Seng Chan
    Jeon, Hokyun
    Jeong, Chang Won
    Choi, Jin Wook
    Park, Rae Woong
    YONSEI MEDICAL JOURNAL, 2022, 63 : S74 - +
  • [2] Developing a perinatal extension for the OMOP common data model
    Abellan, Alicia
    Burn, Edward
    Trinh, Nhung
    Burkard, Theresa
    Fernandez-Bertolin, Sergio
    Hurley, Eimir
    Rodriguez, Clara
    Segundo, Elena
    Morales, Daniel R.
    Nordeng, Hedvig
    Duarte-Salles, Talita
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2023, 32 : 419 - 419
  • [3] MI-Common Data Model: Extending Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM) for Registering Medical Imaging Metadata and Subsequent Curation Processes
    Kalokyri, Varvara
    Kondylakis, Haridimos
    Sfakianakis, Stelios
    Nikiforaki, Katerina
    Karatzanis, Ioannis
    Mazzetti, Simone
    Tachos, Nikolaos
    Regge, Daniele
    Fotiadis, Dimitrios I.
    Marias, Konstantinos
    Tsiknakis, Manolis
    JCO CLINICAL CANCER INFORMATICS, 2023, 7 : e2300101
  • [4] DATA STANDARDIZATION IN BRAZIL: AN OMOP COMMON DATA MODEL APPROACH IN A DATASUS COHORT
    Oliveira, J. C. B.
    Julian, G. S.
    Maruyama, J. M.
    VALUE IN HEALTH, 2023, 26 (12) : S539 - S539
  • [5] Integrating Clinical Data and Medical Imaging in Lung Cancer: Feasibility Study Using the Observational Medical Outcomes Partnership Common Data Model Extension
    Ji, Hyerim
    Kim, Seok
    Sunwoo, Leonard
    Jang, Sowon
    Lee, Ho-Young
    Yoo, Sooyoung
    JMIR MEDICAL INFORMATICS, 2024, 12
  • [6] Extending the OMOP Common Data Model and Standardized Vocabularies to Support Observational Cancer Research
    Belenkaya, Rimma
    Gurley, Michael J.
    Golozar, Asieh
    Dymshyts, Dmitry
    Miller, Robert T.
    Williams, Andrew E.
    Ratwani, Shilpa
    Siapos, Anastasios
    Korsik, Vladislav
    Warner, Jeremy
    Campbell, W. Scott
    Rivera, Donna
    Banokina, Tatiana
    Modina, Elizaveta
    Bethusamy, Shantha
    Stewart, Henry Morgan
    Patel, Meera
    Chen, Ruijun
    Falconer, Thomas
    Park, Rae Woong
    You, Seng Chan
    Jeon, Hokyun
    Shin, Soe Jeong
    Reich, Christian
    JCO CLINICAL CANCER INFORMATICS, 2021, 5 : 12 - 20
  • [7] Transforming Estonian health data to the Observational Medical Outcomes Partnership (OMOP) Common Data Model: lessons learned
    Oja, Marek
    Tamm, Sirli
    Mooses, Kerli
    Pajusalu, Maarja
    Talvik, Harry-Anton
    Ott, Anne
    Laht, Marianna
    Malk, Maria
    Loo, Marcus
    Holm, Johannes
    Haug, Markus
    Suvalov, Hendrik
    Saerg, Dage
    Vilo, Jaak
    Laur, Sven
    Kolde, Raivo
    Reisberg, Sulev
    JAMIA OPEN, 2023, 6 (04)
  • [8] The Observational Medical Outcomes Program (OMOP) Common Data Model: An Invaluable Resource for Advancing Translational Research in Mood Disorders
    Svensson-Ranallo, Piper
    Williams, Andrew
    McInnis, Melvin
    BIOLOGICAL PSYCHIATRY, 2024, 95 (10) : S8 - S8
  • [9] A Data Grid for imaging-based clinical trials
    Zhou, Zheng
    Chao, Sander S. D.
    Lee, Jasper
    Liu, Brent
    Documet, Jorge
    Huang, H. K.
    MEDICAL IMAGING 2007: PACS AND IMAGING INFORMATICS, 2007, 6516
  • [10] Lessons Learned from Mapping the THIN Database to the Observational Medical Outcome Partnership (OMOP) Common Data Model (CDM)
    Zhou, X.
    Murugesan, S.
    Wentworth, C.
    Bhullar, H.
    Bate, A.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2010, 19 : S311 - S311