Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations

被引:0
|
作者
Guang-hua Gao
Zhi-zhong Sun
机构
[1] Nanjing University of Posts and Telecommunications,College of Science
[2] Southeast University,Department of Mathematics
来源
Numerical Algorithms | 2017年 / 74卷
关键词
Distributed order; Fractional derivative; Difference scheme; Stability; Convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Two difference schemes are derived for numerically solving the one-dimensional time distributed-order fractional wave equations. It is proved that the schemes are unconditionally stable and convergent in the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }$\end{document} norm with the convergence orders O(τ2 + h2+Δγ2) and O(τ2 + h4+Δγ4), respectively, where τ,h, and Δγ are the step sizes in time, space, and distributed order. A numerical example is implemented to confirm the theoretical results.
引用
收藏
页码:675 / 697
页数:22
相关论文
共 50 条
  • [1] Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    [J]. NUMERICAL ALGORITHMS, 2017, 74 (03) : 675 - 697
  • [2] Two Alternating Direction Implicit Difference Schemes for Solving the Two-Dimensional Time Distributed-Order Wave Equations
    Guang-hua Gao
    Zhi-zhong Sun
    [J]. Journal of Scientific Computing, 2016, 69 : 506 - 531
  • [3] Two Alternating Direction Implicit Difference Schemes for Solving the Two-Dimensional Time Distributed-Order Wave Equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (02) : 506 - 531
  • [4] Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 591 - 615
  • [5] Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations
    Guang-hua Gao
    Zhi-zhong Sun
    [J]. Journal of Scientific Computing, 2016, 66 : 1281 - 1312
  • [6] Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 1281 - 1312
  • [7] Distributed-order time-fractional wave equations
    Frederik Broucke
    Ljubica Oparnica
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [8] Distributed-order time-fractional wave equations
    Broucke, Frederik
    Oparnica, Ljubica
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [9] Distributed-order wave equations with composite time fractional derivative
    Tomovski, Zivorad
    Sandev, Trifce
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1100 - 1113
  • [10] Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations
    Jian, Huan-Yan
    Huang, Ting-Zhu
    Gu, Xian-Ming
    Zhao, Xi-Le
    Zhao, Yong-Liang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 94 : 136 - 154