Higher-Order Finite Element Methods for the Nonlinear Helmholtz Equation

被引:0
|
作者
Barbara Verfürth
机构
[1] Universität Bonn,Institut für Numerische Simulation
来源
关键词
Nonlinear Helmholtz equation; Higher-order finite elements; Error analysis; High wave number; 65N15; 65N12; 65N30; 78A40;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we analyze the finite element method with arbitrary but fixed polynomial degree for the nonlinear Helmholtz equation with impedance boundary conditions. We show well-posedness and error estimates of the finite element solution under a resolution condition between the wave number k, the mesh size h and the polynomial degree p of the form “k(kh)p+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k(kh)^{p+1}$$\end{document} sufficiently small” and a so-called smallness of the data assumption. For the latter, we prove that the logarithmic dependence in h from the case p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1$$\end{document} in Wu and Zou (SIAM J Numer Anal 56(3):1338–1359, 2018) can be removed for p≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document}. We show convergence of two different fixed-point iteration schemes. Numerical experiments illustrate our theoretical results and compare the robustness of the iteration schemes with respect to the size of the nonlinearity and the right-hand side data.
引用
收藏
相关论文
共 50 条
  • [1] Higher-Order Finite Element Methods for the Nonlinear Helmholtz Equation
    Verfuerth, Barbara
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)
  • [2] THE USE OF HIGHER-ORDER FINITE-ELEMENT METHODS FOR THE SOLUTION OF REYNOLDS-EQUATION
    ETTLES, CM
    ANDERSON, HG
    [J]. TRIBOLOGY TRANSACTIONS, 1990, 33 (02) : 163 - 170
  • [3] HIGHER-ORDER FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH INTERFACES
    Guzman, Johnny
    Sanchez, Manuel A.
    Sarkis, Marcus
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (05): : 1561 - 1583
  • [4] Mixed finite element methods and higher-order temporal approximations
    Farthing, MW
    Kees, CE
    Miller, CT
    [J]. ADVANCES IN WATER RESOURCES, 2002, 25 (01) : 85 - 101
  • [5] Controllability method for the Helmholtz equation with higher-order discretizations
    Heikkola, Erkki
    Monkola, Sanna
    Pennanen, Anssi
    Rossi, Tuomo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1553 - 1576
  • [6] A higher-order finite element approach to the Kuramoto-Sivashinsky equation
    Anders, Denis
    Dittmann, Maik
    Weinberg, Kerstin
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (08): : 599 - 607
  • [7] A higher-order quadrilateral shell finite element for geometrically nonlinear analysis
    Trinh, Minh-Chien
    Jun, Hyungmin
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 89
  • [8] On a Higher-Order Nonlinear Difference Equation
    Iricanin, Bratislav D.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [9] MIXED FINITE ELEMENT METHODS OF HIGHER-ORDER FOR MODEL CONTACT PROBLEMS
    Schroeder, Andreas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2323 - 2339
  • [10] A TWO-SCALE HIGHER-ORDER FINITE ELEMENT DISCRETIZATION FOR SCHRODINGER EQUATION
    Chen, Huajie
    Liu, Fang
    Zhou, Aihui
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (2-3) : 315 - 337