Structure and Propagation Characteristics of Turbulent Premixed Ammonia-Air Flames

被引:0
|
作者
Ruslan Khamedov
Wonsik Song
Francisco E. Hernández-Pérez
Hong G. Im
机构
[1] King Abdullah University of Science and Technology (KAUST),CCRC, Physical Science and Engineering
[2] Norwegian University of Science and Technology,Department of Energy and Process Engineering
来源
关键词
Direct numerical simulation; Ammonia; Turbulent flame speed; Turbulent premixed flame;
D O I
暂无
中图分类号
学科分类号
摘要
To obtain fundamental insights into the propagating behaviour of turbulent ammonia-air premixed flames, direct numerical simulations are carried out with complex chemistry for the flame-in-a-box configuration. The study compares the turbulent flame speeds of different mixtures at the same location in the Borghi–Peters diagram, including lean (equivalence ratio, ϕ=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \!=\!$$\end{document} 0.81) and rich (ϕ=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \!=\!$$\end{document} 1.2) NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}-air, lean (ϕ=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \!=\!$$\end{document} 0.81) NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}-H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-air and lean (ϕ=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \!=\!$$\end{document} 0.41) H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-air, as well as their respective equidiffusive counterparts. It is found that the lean NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}-H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-air and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}-air mixtures have a higher level of turbulent flame speed enhancement than the lean and rich NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}-air flames. While the effect of the diffusive-thermal instability on mean turbulent flame speed is minor for NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}-air flames, it is notable for the hydrogen-containing ones. The location of the heat release peak and effective root-mean-square turbulent velocity (u′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\prime$$\end{document}) at the flame front are also found to influence the different normalized flame speeds for different fuels with similar nominal turbulence parameters. For the NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}-air flames the burning rate of the lean one is higher than that of the rich one, mainly because the effective u′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^\prime$$\end{document} is larger for the lean flame, leading to greater flame front wrinkling. The impact of different turbulence conditions (Karlovitz number 30–557 and turbulent Reynolds number 36–386) on the behaviour of rich ammonia-air flames is also investigated, finding that the level of turbulent flame speed enhancement is closely linked to the size of the most energetic turbulent eddies. Additionally, the flame structure and the effect of the Lewis number are also examined, concluding that the latter is more pronounced in flames subjected to turbulence with a larger integral scale. The size of the integral length scale is a key factor in determining the level of flame wrinkling and distortion of the preheated zone, although the preheated zone is also affected in flames with a high Karlovitz number.
引用
收藏
页码:769 / 791
页数:22
相关论文
共 50 条
  • [1] Structure and Propagation Characteristics of Turbulent Premixed Ammonia-Air Flames
    Khamedov, Ruslan
    Song, Wonsik
    Hernandez-Perez, Francisco E.
    Im, Hong G.
    [J]. FLOW TURBULENCE AND COMBUSTION, 2024, 112 (03) : 769 - 791
  • [2] Insight into the inner structure of stretched premixed ammonia-air flames
    Karan, Alka
    Dayma, Guillaume
    Chauveau, Christian
    Halter, Fabien
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (02) : 1743 - 1752
  • [3] STABILIZATION OF TURBULENT AMMONIA-AIR FLAMES ON FLAMEHOLDERS
    ROHDE, E
    LOBLICH, KR
    FETTING, F
    [J]. COMBUSTION AND FLAME, 1969, 13 (03) : 327 - &
  • [4] Propagation characteristics of lean turbulent premixed ammonia-hydrogen flames
    Khamedov, Ruslan
    Malik, Mohammad Rafi
    Hernandez-Perez, Francisco E.
    Im, Hong G.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [5] Influence of wall heat loss on the emission characteristics of premixed ammonia-air swirling flames interacting with the combustor wall
    Okafor, Ekenechukwu C.
    Tsukamoto, Masaaki
    Hayakawa, Akihiro
    Somarathne, K. D. Kunkuma A.
    Kudo, Taku
    Tsujimura, Taku
    Kobayashi, Hideaki
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (04) : 5139 - 5146
  • [6] Effects of radiative heat loss on extinction limits of counterflow premixed ammonia-air flames
    Fang, Ruozhou
    Papas, Paul
    Sung, Chih-Jen
    Stevens, James F.
    Smith, Lance L.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [7] Propagation and emissions of premixed methane-ammonia/air flames
    Ku, J. W.
    Ahn, Y. J.
    Kim, H. K.
    Kim, Y. H.
    Kwon, O. C.
    [J]. ENERGY, 2020, 201
  • [8] Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner
    Somarathne, Kapuruge Don Kunkuma Amila
    Hayakawa, Akihiro
    Kobayashi, Hideaki
    [J]. JOURNAL OF FLUID SCIENCE AND TECHNOLOGY, 2016, 11 (04):
  • [9] Structure and scalar correlation of ammonia/air turbulent premixed flames in the distributed reaction zone regime
    Fan, Qingshuang
    Liu, Xin
    Cai, Xiao
    Brackmann, Christian
    Alden, Marcus
    Bai, Xue-Song
    Li, Zhongshan
    [J]. COMBUSTION AND FLAME, 2022, 241
  • [10] Propagation and topology in turbulent premixed flames
    Ahmed, Hassan F.
    Cant, R. Stewart
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)