Multi-objective enhanced interval optimization problem

被引:0
|
作者
P. Kumar
A. K. Bhurjee
机构
[1] SRM Institute of Science and Technology,Department of Mathematics
[2] VIT Bhopal University,undefined
来源
关键词
Non-linear optimization problem; Interval valued function; Interval optimization problem; Efficient solution; 90C25; 90C29; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a multiple objective optimization problem whose decision variables and parameters are intervals. Existence of solution of this problem is studied by parameterizing the intervals. A methodology is developed to find the tω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\omega $$\end{document}-efficient solution of the problem. The original problem is transformed to an equivalent deterministic problem and the relation between solutions of both is established. Finally, the methodology is verified in numerical examples.
引用
收藏
页码:1035 / 1050
页数:15
相关论文
共 50 条
  • [1] Multi-objective enhanced interval optimization problem
    Kumar, P.
    Bhurjee, A. K.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2022, 311 (02) : 1035 - 1050
  • [2] An interval algorithm for multi-objective optimization
    Ruetsch, GR
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2005, 30 (01) : 27 - 37
  • [3] An interval algorithm for multi-objective optimization
    G.R. Ruetsch
    [J]. Structural and Multidisciplinary Optimization, 2005, 30 : 27 - 37
  • [4] Gaussian surrogate models for expensive interval multi-objective optimization problem
    Chen Z.-W.
    Bai X.
    Yang Q.
    Huang X.-W.
    Li G.-Q.
    [J]. Bai, Xin (15233013272@163.com), 2016, South China University of Technology (33): : 1389 - 1398
  • [5] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    [J]. 2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [6] Parametric approach for multi-objective enhanced interval linear fractional programming problem
    Patel, Mridul
    Behera, Jyotirmayee
    Kumar, Pankaj
    [J]. ENGINEERING OPTIMIZATION, 2024, 56 (05) : 740 - 765
  • [7] Enhanced Efficiency in Multi-objective Optimization
    Jiang, Y.
    Deng, S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (02) : 577 - 588
  • [8] Enhanced Efficiency in Multi-objective Optimization
    Y. Jiang
    S. Deng
    [J]. Journal of Optimization Theory and Applications, 2014, 162 : 577 - 588
  • [9] Enhanced Chemical Reaction Optimization for Multi-objective Traveling Salesman Problem
    Bouzoubia, Samira
    Layeb, Abdesslem
    Chikhi, Salim
    [J]. MODELLING AND IMPLEMENTATION OF COMPLEX SYSTEMS, MISC 2016, 2016, : 91 - 106
  • [10] FUZZY MULTI-OBJECTIVE TRANSPORTATION PROBLEM WITH INTERVAL COST
    Lohgaonkar, M. H.
    Bajaj, V. H.
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2010, 6 (01): : 187 - 196