Addendum to “uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces”

被引:0
|
作者
F. Albiac
J. L. Ansorena
机构
[1] Universidad Pública de Navarra,Department of Mathematics, Statistics and Computer Sciences, and InaMat
[2] Universidad de La Rioja,Department of Mathematics and Computer Sciences
来源
Positivity | 2022年 / 26卷
关键词
Uniqueness of unconditional basis; Quasi-Banach space; 46B15; 46B20; 46B42; 46B45; 46A16; 46A35; 46A40; 46A45;
D O I
暂无
中图分类号
学科分类号
摘要
After [Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces, Positivity 26 (2022), Paper no. 35] was published, we realized that Theorem 4.2 therein, when combined with work of Casazza and Kalton (Israel J. Math. 103:141–175, 1998) , solves the long-standing problem whether there exists a quasi-Banach space with a unique unconditional basis whose Banach envelope does not have a unique unconditional basis. Here we give examples to prove that the answer is positive. We also use auxiliary results in the aforementioned paper to give a negative answer to the question of Bourgain et al. (Mem Am Math Soc 54:iv+111, 1985)*Problem 1.11 whether the infinite direct sum ℓ1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{1}(X)$$\end{document} of a Banach space X has a unique unconditional basis whenever X does.
引用
收藏
相关论文
共 50 条