A deep neural network framework to derive interpretable decision rules for accurate traumatic brain injury identification of infants

被引:0
|
作者
Baiming Zou
Xinlei Mi
Elizabeth Stone
Fei Zou
机构
[1] University of North Carolina at Chapel Hill,Department of Biostatistics
[2] University of North Carolina at Chapel Hill,School of Nursing
[3] Northwestern University,Department of Preventive Medicine
[4] University of North Carolina at Chapel Hill, Biostatistics Quantitative Data Sciences Core (QDSC)
关键词
Deep neural network; Diagnosis test; Feature importance; Head trauma; Testable machine learning; Permutation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A deep neural network framework to derive interpretable decision rules for accurate traumatic brain injury identification of infants
    Zou, Baiming
    Mi, Xinlei
    Stone, Elizabeth
    Zou, Fei
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [2] An interpretable neural network for outcome prediction in traumatic brain injury
    Minoccheri, Cristian
    Williamson, Craig A.
    Hemmila, Mark
    Ward, Kevin
    Stein, Erica B.
    Gryak, Jonathan
    Najarian, Kayvan
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [3] An interpretable neural network for outcome prediction in traumatic brain injury
    Cristian Minoccheri
    Craig A. Williamson
    Mark Hemmila
    Kevin Ward
    Erica B. Stein
    Jonathan Gryak
    Kayvan Najarian
    [J]. BMC Medical Informatics and Decision Making, 22
  • [4] Piecewise integrable neural network: An interpretable chaos identification framework
    Novelli, Nico
    Belardinelli, Pierpaolo
    Lenci, Stefano
    [J]. CHAOS, 2023, 33 (02)
  • [5] Brain age prediction using interpretable multi-feature-based convolutional neural network in mild traumatic brain injury
    Zhang, Xiang
    Pan, Yizhen
    Wu, Tingting
    Zhao, Wenpu
    Zhang, Haonan
    Ding, Jierui
    Ji, Qiuyu
    Jia, Xiaoyan
    Li, Xuan
    Lee, Zhiqi
    Zhang, Jie
    Bai, Lijun
    [J]. NEUROIMAGE, 2024, 297
  • [6] Use of Traumatic Brain Injury Prediction Rules With Clinical Decision Support\
    Dayan, Peter S.
    Ballard, Dustin W.
    Tham, Eric
    Hoffman, Jeff M.
    Swietlik, Marguerite
    Deakyne, Sara J.
    Alessandrini, Evaline A.
    Tzimenatos, Leah
    Bajaj, Lalit
    Vinson, David R.
    Mark, Dustin G.
    Offerman, Steve R.
    Chettipally, Uli K.
    Paterno, Marilyn D.
    Schaeffer, Molly H.
    Wang, Jun
    Casper, T. Charles
    Goldberg, Howard S.
    Grundmeier, Robert W.
    Kuppermann, Nathan
    [J]. PEDIATRICS, 2017, 139 (04)
  • [7] A DEEP LEARNING FRAMEWORK FOR BRAIN EXTRACTION IN HUMANS AND ANIMALS WITH TRAUMATIC BRAIN INJURY
    Roy, Snehashis
    Knutsen, Andrew
    Korotcov, Alexandru
    Bosomtwi, Asamoah
    Dardzinski, Bernard
    Butman, John A.
    Pham, Dzung L.
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 687 - 691
  • [8] Using an artificial neural network to predict traumatic brain injury
    Hale, Andrew T.
    Stonko, David P.
    Lim, Jaims
    Guillamondegui, Oscar D.
    Shannon, Chevis N.
    Patel, Mayur B.
    [J]. JOURNAL OF NEUROSURGERY-PEDIATRICS, 2019, 23 (02) : 219 - 226
  • [9] Interpretable 3D Multi-modal Residual Convolutional Neural Network for Mild Traumatic Brain Injury Diagnosis
    Ellethy, Hanem
    Vegh, Viktor
    Chandra, Shekhar S.
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 483 - 494
  • [10] NetBCE: An Interpretable Deep Neural Network for Accurate Prediction of Linear B-cell Epitopes
    Haodong Xu
    Zhongming Zhao
    [J]. Genomics,Proteomics & Bioinformatics, 2022, (05) : 1002 - 1012