Boundary concentrated finite elements for optimal boundary control problems of elliptic PDEs

被引:0
|
作者
Sven Beuchler
Clemens Pechstein
Daniel Wachsmuth
机构
[1] Austrian Academy of Sciences,Johann Radon Institute for Computational and Applied Mathematics
[2] Johannes Kepler University,Institute of Computational Mathematics
关键词
Optimal boundary control; Boundary concentrated finite element method; Discretization error estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the discretization of optimal boundary control problems for elliptic equations on two-dimensional polygonal domains by the boundary concentrated finite element method. We prove that the discretization error \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u^{*}-u_{h}^{*}\|_{L^{2}(\Gamma)}$\end{document} decreases like N−1, where N is the total number of unknowns. This makes the proposed method favorable in comparison to the h-version of the finite element method, where the discretization error behaves like N−3/4 for uniform meshes. Moreover, we present an algorithm that solves the discretized problem in almost optimal complexity. The paper is complemented with numerical results.
引用
收藏
页码:883 / 908
页数:25
相关论文
共 50 条
  • [1] Boundary concentrated finite elements for optimal boundary control problems of elliptic PDEs
    Beuchler, Sven
    Pechstein, Clemens
    Wachsmuth, Daniel
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (02) : 883 - 908
  • [2] Boundary concentrated finite elements for optimal control problems with distributed observation
    S. Beuchler
    K. Hofer
    D. Wachsmuth
    J.-E. Wurst
    [J]. Computational Optimization and Applications, 2015, 62 : 31 - 65
  • [3] Boundary concentrated finite elements for optimal control problems with distributed observation
    Beuchler, S.
    Hofer, K.
    Wachsmuth, D.
    Wurst, J. -E.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (01) : 31 - 65
  • [4] Immersed finite elements for optimal control problems of elliptic PDEs with interfaces
    Zhang, Qian
    Ito, Kazufumi
    Li, Zhilin
    Zhang, Zhiyue
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 305 - 319
  • [5] Meshless methods for solving Dirichlet boundary optimal control problems governed by elliptic PDEs
    Guan, Hongbo
    Wang, Yong
    Zhu, Huiqing
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 98 : 438 - 445
  • [6] Finite element methods for elliptic optimal control problems with boundary observations
    Yan, Ming
    Gong, Wei
    Yan, Ningning
    [J]. APPLIED NUMERICAL MATHEMATICS, 2015, 90 : 190 - 207
  • [7] Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements
    Roos, Hans-Goerg
    [J]. SIAM REVIEW, 2010, 52 (04) : 786 - 787
  • [8] On Finite Element Error Estimates for Optimal Control Problems with Elliptic PDEs
    Troeltzsch, Fredi
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 40 - 53
  • [9] Finite Element Approximations for PDEs with Irregular Dirichlet Boundary Data on Boundary Concentrated Meshes
    Pfefferer, Johannes
    Winkler, Max
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (04) : 1007 - 1021
  • [10] Numerical Analysis of Fourier Finite Volume Element Method for Dirichlet Boundary Optimal Control Problems Governed by Elliptic PDEs on Complex Connected Domains
    Su, Mengya
    Xie, Liuqing
    Zhang, Zhiyue
    [J]. MATHEMATICS, 2022, 10 (24)