A pricing problem with unknown arrival rate and price sensitivity

被引:0
|
作者
Athanassios N. Avramidis
机构
[1] University of Southampton,School of Mathematical Sciences
关键词
Estimation; Asymptotic efficiency; Exploration–exploitation; Regret; Asymptotic analysis; 60K10; 93E35; 90B05; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
We study a pricing problem with finite inventory and semi-parametric demand uncertainty. Demand is a price-dependent Poisson process whose mean is the product of buyers’ arrival rate, which is a constant λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, and buyers’ purchase probability q(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q(p)$$\end{document}, where p is the price. The seller observes arrivals and sales, and knows neither λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} nor q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}. Based on a non-parametric maximum-likelihood estimator of (λ,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda ,q)$$\end{document}, we construct an estimator of mean demand and show that as the system size and number of prices grow, it is asymptotically more efficient than the maximum likelihood estimator based only on sale data. Based on this estimator, we develop a pricing algorithm paralleling (Besbes and Zeevi in Oper Res 57:1407–1420, 2009) and study its performance in an asymptotic regime similar to theirs: the initial inventory and the arrival rate grow proportionally to a scale parameter n. If q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} and its inverse function are Lipschitz continuous, then the worst-case regret is shown to be O((logn/n)1/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((\log n / n)^{1/4})$$\end{document}. A second model considered is the one in Besbes and Zeevi (2009, Section 4.2), where no arrivals are involved; we modify their algorithm and improve the worst-case regret to O((logn/n)1/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((\log n / n)^{1/4})$$\end{document}. In each setting, the regret order is the best known, and is obtained by refining their proof methods. We also prove an Ω(n-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n^{-1/2})$$\end{document} lower bound on the regret. Numerical comparisons to state-of-the-art alternatives indicate the effectiveness of our arrivals-based approach.
引用
收藏
页码:77 / 106
页数:29
相关论文
共 50 条
  • [1] A pricing problem with unknown arrival rate and price sensitivity
    Avramidis, Athanassios N.
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 92 (01) : 77 - 106
  • [2] Dynamic Pricing with Unknown Nonparametric Demand and Limited Price Changes
    Perakis, Georgia
    Singhvi, Divya
    [J]. OPERATIONS RESEARCH, 2023, 72 (06) : 2726 - 2744
  • [3] Electric bike sharing: Price sensitivity and pricing preferences
    Bielinski, Tomasz
    Czuba, Tomasz
    Dopierala, Lukasz
    Tarkowski, Maciej
    [J]. RESEARCH IN TRANSPORTATION BUSINESS AND MANAGEMENT, 2024, 56
  • [4] Joint pricing and inventory problem with price dependent stochastic demand and price discounts
    Jadidi, Omid
    Jaber, Mohamad Y.
    Zolfaghari, Saeed
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2017, 114 : 45 - 53
  • [5] MODELING THE DISTRIBUTION OF PRICE SENSITIVITY AND IMPLICATIONS FOR OPTIMAL RETAIL PRICING
    KIM, BD
    BLATTBERG, RC
    ROSSI, PE
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1995, 13 (03) : 291 - 303
  • [6] PRICE-SENSITIVITY MEASUREMENT: A TOOL FOR RESTAURANT MENU PRICING
    Raab, Carola
    Mayer, Karl
    Kim, Yen-Soon
    Shoemaker, Stowe
    [J]. JOURNAL OF HOSPITALITY & TOURISM RESEARCH, 2009, 33 (01) : 93 - 105
  • [7] Price sensitivity testing as a basic tool for strategic pricing decisions
    Kintler, Jakub
    Remenova, Katarina
    Bartekova, Maria Kmety
    [J]. STRATEGIC MANAGEMENT, 2022,
  • [8] Efficient Algorithms for the Dynamic Pricing Problem with Reference Price Effect
    Chen, Xin
    Hu, Peng
    Hu, Zhenyu
    [J]. MANAGEMENT SCIENCE, 2017, 63 (12) : 4389 - 4408
  • [9] Microfinance Interest Rate Puzzle: Price Rationing or Panic Pricing?
    Guo, Lin
    Jo, Hoje
    [J]. ASIA-PACIFIC JOURNAL OF FINANCIAL STUDIES, 2017, 46 (02) : 185 - 220
  • [10] Pricing of interest rate guarantees:: Is the arbitrage free price fair?
    Dag, S
    Pål, L
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (01): : 173 - 173