A Strongly Degenerate Quasilinear Equation: the Parabolic Case

被引:0
|
作者
Fuensanta Andreu
Vicent Caselles
José M. Mazón
机构
[1] Universitat de Valencia,Dept. de Análisis Matemático
[2] Universitat Pompeu-Fabra,Dept. de Tecnologia
关键词
Entropy; Neural Network; Complex System; Nonlinear Dynamics; Convex Function;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence and uniqueness of entropy solutions of the Neumann problem for the quasilinear parabolic equation ut=÷ a(u, Du), where a(z,ξ)=∇ξf(z,ξ), and f is a convex function of ξ with linear growth as ||ξ||→∞, satisfying other additional assumptions. In particular, this class includes the case where f(z,ξ)=φ(z)ψ(ξ), φ>0, and ψ is a convex function with linear growth as ||ξ||→∞.
引用
收藏
页码:415 / 453
页数:38
相关论文
共 50 条
  • [1] A strongly degenerate quasilinear equation:: The parabolic case
    Andreu, F
    Caselles, V
    Mazón, JM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (03) : 415 - 453
  • [2] A strongly degenerate quasilinear equation:: the elliptic case
    Andreu, F
    Caselles, V
    Mazón, JM
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2004, 3 (03) : 555 - 587
  • [3] A strongly degenerate quasilinear elliptic equation
    Andreu, F
    Caselles, V
    Mazón, JM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (04) : 637 - 669
  • [4] Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source
    Zheng, Pan
    Mu, Chunlai
    Liu, Dengming
    Yao, Xianzhong
    Zhou, Shouming
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [5] On the Cauchy Problem of a Quasilinear Degenerate Parabolic Equation
    Liang, Zongqi
    Zhan, Huashui
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
  • [6] A STRONGLY DEGENERATE PARABOLIC AGGREGATION EQUATION
    Betancourt, F.
    Buerger, R.
    Karlsen, K. H.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (03) : 711 - 742
  • [7] The Cauchy problem for a strongly degenerate quasilinear equation
    Andreu, F
    Caselles, V
    Mazón, JM
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2005, 7 (03) : 361 - 393
  • [8] A degenerate and strongly coupled quasilinear parabolic system not in divergence form
    Wang, MX
    Xie, CH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (05): : 741 - 755
  • [9] A degenerate and strongly coupled quasilinear parabolic system not in divergence form
    Mingxin Wang
    Chunhong Xie
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 741 - 755
  • [10] Weak Solutions of a Class of Strongly Degenerate Quasilinear Parabolic Equations
    李颖花
    王泽佳
    刘强
    Communications in Mathematical Research, 2006, (03) : 370 - 378