Sharp regularity for the inhomogeneous porous medium equation

被引:0
|
作者
Damião J. Araújo
Anderson F. Maia
José Miguel Urbano
机构
[1] Universidade Federal da Paraíba,Department of Mathematics
[2] University of Coimbra,CMUC, Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We show that locally bounded solutions of the inhomogeneous porous medium equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{t}-\operatorname{div}\left(m|u|^{m-1} \nabla u\right)=f \in L^{q, r}, \quad m>1$$\end{document} are locally Hölder continuous, with exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma = \min \{ {{\alpha _0^ - } \over m},\;{{[(2q - n)r - 2q]} \over {q[(mr - (m - 1)]}}\} ,$$\end{document} where α0 denotes the optimal Hölder exponent for solutions of the homogeneous case. The proof relies on an approximation lemma and geometric iteration in the appropriate intrinsic scaling.
引用
收藏
页码:395 / 407
页数:12
相关论文
共 50 条
  • [1] Sharp regularity for the inhomogeneous porous medium equation
    Araujo, Damiao J.
    Maia, Anderson F.
    Urbano, Jose Miguel
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2020, 140 (02): : 395 - 407
  • [2] Improved regularity for the inhomogeneous Porous Medium Equation
    Diehl, Nicolau M. L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)
  • [3] Boundary Regularity for the Porous Medium Equation
    Bjorn, Anders
    Bjorn, Jana
    Gianazzac, Ugo
    Siljander, Juhana
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 230 (02) : 493 - 538
  • [4] Optimal regularity for the porous medium equation
    Gess, Benjamin
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (02) : 425 - 465
  • [5] REGULARITY OF THE INTERFACE FOR THE POROUS MEDIUM EQUATION
    Ko, Youngsang
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2000,
  • [6] Boundary Regularity for the Porous Medium Equation
    Anders Björn
    Jana Björn
    Ugo Gianazza
    Juhana Siljander
    [J]. Archive for Rational Mechanics and Analysis, 2018, 230 : 493 - 538
  • [7] Some sharp Sobolev regularity for inhomogeneous infinity Laplace equation in plane
    Koch, Herbert
    Zhang, Yi Ru-Ya
    Zhou, Yuan
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 483 - 521
  • [8] Sharp Regularity Estimates for a Singular Inhomogeneous (m, p)-Laplacian Equation
    Andrade, Pedra D. S.
    da Silva, Joao Vitor
    Rampasso, Giane C.
    Santos, Makson S.
    [J]. POTENTIAL ANALYSIS, 2024,
  • [9] Regularity of the free boundary for the porous medium equation
    Daskalopoulos, P
    Hamilton, R
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (04) : 899 - 965
  • [10] Concerning the regularity of the anisotropic porous medium equation
    Henriques, Eurica
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 710 - 731