We construct for a given arbitrary skew diagram \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document} all partitions ν with maximal principal hook lengths among all partitions with [ν] appearing in [\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document}]. Furthermore, we show that these are also partitions with minimal Durfee size. We use this to give the maximal Durfee size for [ν] appearing in [\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document}] for the cases when \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document} decays into two partitions and for some special cases of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal A}$$\end{document}. We also deduce necessary conditions for two skew diagrams to represent the same skew character.
机构:
Leibniz Univ Hannover, Fak Math & Phys, D-30167 Hannover, GermanyUniv Strasbourg, IRMA, UMR 7501, F-67084 Strasbourg, France
Bessenrodt, Christine
Han, Guo-Niu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, IRMA, UMR 7501, F-67084 Strasbourg, France
CNRS, F-67084 Strasbourg, FranceUniv Strasbourg, IRMA, UMR 7501, F-67084 Strasbourg, France