Decay of Correlations in Finite Abelian Lattice Gauge Theories

被引:0
|
作者
Malin P. Forsström
机构
[1] KTH Royal Institute of Technology,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study lattice gauge theory on Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {Z}^4 $$\end{document} with finite Abelian structure group. When the inverse coupling strength is sufficiently large, we use ideas from disagreement percolation to give an upper bound on the decay of correlations of local functions. We then use this upper bound to compute the leading-order term for both the expected value of the spin at a given plaquette as well as for the two-point correlation function. Moreover, we give an upper bound on the dependency of the size of the box on which the model is defined. The results in this paper extend and refine results by Chatterjee and Borgs.
引用
收藏
页码:1311 / 1346
页数:35
相关论文
共 50 条
  • [1] Decay of Correlations in Finite Abelian Lattice Gauge Theories
    Forsstrom, Malin P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (03) : 1311 - 1346
  • [2] Wilson loops in finite Abelian lattice gauge theories
    Forsstrom, Malin P.
    Lenells, Jonatan
    Viklund, Fredrik
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2129 - 2164
  • [3] CORRELATION DECAY FOR FINITE LATTICE GAUGE THEORIES AT WEAK COUPLING
    Adhikari, Arka
    Cao, Sky
    ANNALS OF PROBABILITY, 2025, 53 (01): : 140 - 174
  • [4] Bootstrapping the Abelian lattice gauge theories
    Li, Zhijin
    Zhou, Shutong
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [5] Optical Abelian lattice gauge theories
    Tagliacozzo, L.
    Celi, A.
    Zamora, A.
    Lewenstein, M.
    ANNALS OF PHYSICS, 2013, 330 : 160 - 191
  • [6] DISCRETE AND ABELIAN LATTICE GAUGE THEORIES
    GREEN, MB
    NUCLEAR PHYSICS B, 1978, 144 (2-3) : 473 - 512
  • [7] Abelian monopole condensation in lattice gauge theories
    Cea, P
    Cosmai, L
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 428 - 430
  • [8] Phase transitions in Abelian lattice gauge theories
    Cheluvaraja, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (06): : 1099 - 1112
  • [9] DUALITY IN ABELIAN GAUGE-THEORIES ON A LATTICE
    ZINOVEV, YM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1980, 43 (03) : 481 - 490
  • [10] Gauge protection in non-abelian lattice gauge theories
    Halimeh, Jad C.
    Lang, Haifeng
    Hauke, Philipp
    NEW JOURNAL OF PHYSICS, 2022, 24 (03):