Crop classification by using dual-pol SAR vegetation indices derived from Sentinel-1 SAR-C data

被引:0
|
作者
Deeksha Mishra
Gunjan Pathak
Bhanu Pratap Singh
Parveen Mohit
Kalyan Sihag
Sultan Rajeev
机构
[1] Haryana Space Applications Centre (HARSAC),GIS Lab
[2] Gurugram Metropolitan Development Authority (GMDA), Gurugram Node
来源
关键词
Sentinel-1 SAR; RF; SVM; Paddy; SVI;
D O I
暂无
中图分类号
学科分类号
摘要
In the following study, an attempt is made for crop classification of rainy season through analyzing time-series Sentinel-1 SAR data of May 2020 to September 2020. The SVIDP index derived from dual-pol (VV and VH) bands consisting of NRPB (σ0vhij-σ0vvij/σ0vhij+σ0vvij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }^{0}{vh}_{ij}- {\sigma }^{0}{vv}_{ij}/{\sigma }^{0}{vh}_{ij}+ {\sigma }^{0}{vv}_{ij}$$\end{document}), DPDD (σ0vhij+σ0vvij)/√2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\sigma }^{0}{vh}_{ij}+ {\sigma }^{0}{vv}_{ij})/ \surd 2$$\end{document}), IDPDD (σ0vv(max)-σ0vvij)+σ0vhij/√2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma}^{0}{vv}_{(max)}- {\sigma }^{0}{vv}_{ij})+{\sigma }^{0}{vh}_{ij}/ \surd 2$$\end{document}), and VDDPI (σ0vhij+σ0vvij/σ0vvij)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\sigma }^{0}{vh}_{ij}+{\sigma }^{0}{vv}_{ij}/ {\sigma }^{0}{vv}_{ij})$$\end{document} ratios are utilized for discriminating inter-vegetative boundaries of crop pixels. This study was conducted near Karnal city region, Karnal district, Haryana, India. The Sentinel-1 data has the capability to penetrate thick cloud cover and provide high revisit frequency data for rain-fed crops. Obtained classification achieved higher accuracy in both RF (93.77%) and SVM (93.50%) classifiers. Obtained linear regression statistics of mean raster imagery reveals that IDPDD index is much sensitive to other crop which has highest standard deviations in σvh° and σvv° bands throughout the period, and high R2 with σvh° (0.70), VV (0.58), NRPB (0.693), and DPDD (0.697) indices. In contrast to this, IDPDD index has least correlation (< 0.289) with σvh°, σvv°, EVI 2, NRPB, and DPDD indices for water body which has smooth surface and lowest SAR backscattering with minimum standard deviations in the same period.
引用
收藏
相关论文
共 50 条
  • [1] Crop classification by using dual-pol SAR vegetation indices derived from Sentinel-1 SAR-C data
    Mishra, Deeksha
    Pathak, Gunjan
    Singh, Bhanu Pratap
    Mohit
    Sihag, Parveen
    Rajeev
    Singh, Kalyan
    Singh, Sultan
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (01)
  • [2] Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
    Dey, Subhadip
    Bhogapurapu, Narayanarao
    Homayouni, Saeid
    Bhattacharya, Avik
    McNairn, Heather
    [J]. REMOTE SENSING, 2021, 13 (21)
  • [3] Scattering power components from dual-pol Sentinel-1 SLC and GRD SAR data
    Verma, Abhinav
    Bhattacharya, Avik
    Dey, Subhadip
    Lopez-Martinez, Carlos
    Gamba, Paolo
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 212 : 289 - 305
  • [4] Model-Based Decomposition of Dual-Pol SAR Data: Application to Sentinel-1
    Mascolo, Lucio
    Cloude, Shane R.
    Lopez-Sanchez, Juan M.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Integrating intensity and context for improved supervised river ice classification from dual-pol Sentinel-1 SAR data
    Husman, Sophie de Roda
    van der Sanden, Joost J.
    Lhermitte, Stef
    Eleveld, Marieke A.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 101
  • [6] An approach to estimate tree height using PolInSAR data constructed by the Sentinel-1 dual-pol SAR data and RVoG model
    Zhang, Yin
    Duan, Ding-Feng
    [J]. Journal of Electronic Science and Technology, 2024, 22 (03)
  • [7] An approach to estimate tree height using PolInSAR data constructed by the Sentinel-1 dual-pol SAR data and RVoG model
    Yin Zhang
    Ding-Feng Duan
    [J]. Journal of Electronic Science and Technology, 2024, 22 (03) : 71 - 81
  • [8] Detecting Water Hyacinth Infestation in Kuttanad, India, Using Dual-Pol Sentinel-1 SAR Imagery
    Simpson, Morgan David
    Akbari, Vahid
    Marino, Armando
    Prabhu, G. Nagendra
    Bhowmik, Deepayan
    Rupavatharam, Srikanth
    Datta, Aviraj
    Kleczkowski, Adam
    Sujeetha, J. Alice R. P.
    Anantrao, Girish Gunjotikar
    Poduvattil, Vidhu Kampurath
    Kumar, Saurav
    Maharaj, Savitri
    Hunter, Peter D.
    [J]. REMOTE SENSING, 2022, 14 (12)
  • [9] Vegetation descriptors from Sentinel-1 SAR data for crop growth monitoring
    Bao, Xin
    Zhang, Rui
    Lv, Jichao
    Wu, Renzhe
    Zhang, Hongsheng
    Chen, Jie
    Zhang, Bo
    Ouyang, Xiaoying
    Liu, Guoxiang
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 203 : 86 - 114
  • [10] Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data
    Mandal, Dipankar
    Kumar, Vineet
    Ratha, Debanshu
    Dey, Subhadip
    Bhattacharya, Avik
    Lopez-Sanchez, Juan M.
    McNairn, Heather
    Rao, Yalamanchili S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 247