Particle swarm optimization based on temporal-difference learning for solving multi-objective optimization problems

被引:0
|
作者
Desong Zhang
Guangyu Zhu
机构
[1] Fuzhou University,School of Mechanical Engineering and Automation
来源
Computing | 2023年 / 105卷
关键词
Multi-objective optimization; Particle swarm optimization; Reinforcement learning; Temporal-difference learning; 68W50; 68Q32; 90C29;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-objective evolutionary algorithms have become the most important method to deal with multi-objective optimization problems (MOP). To improve the performance of particle swarm optimization (PSO) in addressing MOPs, a multi-objective PSO based on temporal-difference learning (TDLMOPSO) is proposed in this paper. The iteration process of TDLMOPSO is transformed into a Markov decision process, particles are treated as agents, each agent has a personal archive, the states are designed for the connection of actions, the actions of particles contain all necessary behavior of them: basic movement, jump out of local optimum, and local search, and the rewards depend on the relationship between particles’ positions and their personal archives. Besides, the external archive deletion strategy and the leader selection strategy are redesigned based on the unsupervised learning algorithm to enhance the diversity of solutions in the external archive. The effectiveness of TDLMOPSO is verified by applying it with other seven advanced multi-objective algorithms in MOP benchmark test suites. Furthermore, the time complexity and parameter sensitivity of TDLMOPSO are analyzed.
引用
收藏
页码:1795 / 1820
页数:25
相关论文
共 50 条
  • [1] Particle swarm optimization based on temporal-difference learning for solving multi-objective optimization problems
    Zhang, Desong
    Zhu, Guangyu
    COMPUTING, 2023, 105 (08) : 1795 - 1820
  • [2] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [3] Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
    Zouache, Djaafar
    Arby, Yahya Quid
    Nouioua, Farid
    Ben Abdelaziz, Fouad
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 129 : 377 - 391
  • [4] Solving multi objective optimization problems using particle swarm optimization
    Zhang, LB
    Zhou, CG
    Liu, XH
    Ma, ZQ
    Ma, M
    Liang, YC
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2400 - 2405
  • [5] Dynamic Multi-Swarm Particle Swarm Optimization for Multi-Objective Optimization Problems
    Liang, J. J.
    Qu, B. Y.
    Suganthan, P. N.
    Niu, B.
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [6] Correlative Particle Swarm Optimization for Multi-objective Problems
    Shen, Yuanxia
    Wang, Guoyin
    Liu, Qun
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 17 - 25
  • [7] Intelligent particle swarm optimization in multi-objective problems
    Ho, Shinn-Jang
    Ku, Wen-Yuan
    Jou, Jun-Wun
    Hung, Ming-Hao
    Ho, Shinn-Ying
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 790 - 800
  • [8] A Memetic Particle Swarm Optimization for Constrained Multi-objective Optimization Problems
    Wei, Jingxuan
    Zhang, Mengjie
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 1636 - 1643
  • [9] Multi-objective particle swarm optimization for uncertain reliability optimization problems
    Zhang, En-Ze
    Chen, Qing-Wei
    Kongzhi yu Juece/Control and Decision, 2015, 30 (09): : 1701 - 1705
  • [10] A parallel particle swarm optimization algorithm for multi-objective optimization problems
    Fan, Shu-Kai S.
    Chang, Ju-Ming
    ENGINEERING OPTIMIZATION, 2009, 41 (07) : 673 - 697