On the Law of Addition of Random Matrices

被引:0
|
作者
L. Pastur
V. Vasilchuk
机构
[1] Centre de Physique Théorique de CNRS,
[2] Luminy–case 907,undefined
[3] 13288 Marseille,undefined
[4] France.¶E-mail: pastur@cpt.univ-mrs.fr,undefined
[5] U.F.R. de Mathématiques,undefined
[6] Université Paris 7,undefined
[7] 2,undefined
[8] place Jussieu,undefined
[9] 75251 Paris Cedex 05,undefined
[10] France,undefined
[11] Mathematical Division,undefined
[12] Institute for Low Temperature Physics,undefined
[13] 47,undefined
[14] Lenin Ave.,undefined
[15] 310164,undefined
[16] Kharkov,undefined
[17] Ukraine. E-mail: vasilchuk@ilt.kharkov.ua,undefined
来源
Communications in Mathematical Physics | 2000年 / 214卷
关键词
Functional Equation; Random Matrix; Counting Measure; Large Matrix; Matrix Order;
D O I
暂无
中图分类号
学科分类号
摘要
Normalized eigenvalue counting measure of the sum of two Hermitian (or real symmetric) matrices An and Bn rotated independently with respect to each other by the random unitary (or orthogonal) Haar distributed matrix Un (i.e. An+Un*BnUn) is studied in the limit of large matrix order n. Convergence in probability to a limiting nonrandom measure is established. A functional equation for the Stieltjes transform of the limiting measure in terms of limiting eigenvalue measures of An and Bn is obtained and studied.
引用
收藏
页码:249 / 286
页数:37
相关论文
共 50 条
  • [1] On the law of addition of random matrices
    Pastur, L
    Vasilchuk, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) : 249 - 286
  • [2] Local Law of Addition of Random Matrices on Optimal Scale
    Bao, Zhigang
    Erdos, Laszlo
    Schnelli, Kevin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (03) : 947 - 990
  • [3] Local Law of Addition of Random Matrices on Optimal Scale
    Zhigang Bao
    László Erdős
    Kevin Schnelli
    Communications in Mathematical Physics, 2017, 349 : 947 - 990
  • [4] On the Law of Addition of Random Matrices: Covariance of Traces of Resolvent for Random Summands
    Vasilchuk, V.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2010, 6 (01) : 96 - 127
  • [5] On the law of addition of random matrices: Covariance and the central limit theorem for traces of resolvent
    Pastur, L.
    Vasilchuk, V.
    PROBABILITY AND MATHEMATICAL PHYSICS: A VOLUME IN HONOR OF STANISLAV MOLCHANOV, 2007, 42 : 399 - 416
  • [6] Random matrices: The circular law
    Tao, Terence
    Vu, Van
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (02) : 261 - 307
  • [7] On the Law of Multiplication of Random Matrices
    Vladimir Vasilchuk
    Mathematical Physics, Analysis and Geometry, 2001, 4 : 1 - 36
  • [8] On the Law of Multiplication of Random Matrices
    Vasilchuk, Vladimir
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (01) : 1 - 36
  • [9] RANDOM MATRICES: LAW OF THE DETERMINANT
    Nguyen, Hoi H.
    Van Vu
    ANNALS OF PROBABILITY, 2014, 42 (01): : 146 - 167
  • [10] THE CIRCULAR LAW FOR RANDOM MATRICES
    Gotze, Friedrich
    Tikhomirov, Alexander
    ANNALS OF PROBABILITY, 2010, 38 (04): : 1444 - 1491