Evolution of the Correlation Between the Amplitude of the Solar Cycle and the Sunspot Number Since the Previous Declining Phase in Both Hemispheres

被引:0
|
作者
Zhanle Du
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Space Weather, National Space Science Center
[2] University of Chinese Academy of Science,undefined
来源
Solar Physics | 2022年 / 297卷
关键词
Solar activity, sunspots, solar cycle; Correlation; Prediction; N–S asymmetry;
D O I
暂无
中图分类号
学科分类号
摘要
Analyzing the variation in the correlation between the maximum amplitude [Rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max}}$\end{document}] of the solar cycle and the hemispheric sunspot number [RH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{H}}$\end{document}], since the previous declining phase, is helpful in understanding the temporal evolution of the cycle and the possible different mechanisms at work in the two hemispheres. The correlation coefficient [r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r$\end{document}] between Rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max}}$\end{document} and the smoothed monthly mean RH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{H}}$\end{document} as a function of m=−50,−49,…,50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m=-\,50,-\,49,\,\ldots ,\,50$\end{document} months from the solar minimum [Rmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{min}}$\end{document}] is studied, and it is found that r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r$\end{document} is maximum about three years before Rmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{min}}$\end{document} at the declining phase, falls to a minimum value around Rmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{min}}$\end{document}, and increases with m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m$\end{document} during the rising phase in both hemispheres. Based on the highest correlations at the declining phase, the maximum amplitudes of Cycle 25 in the northern [NH] and southern hemisphere [SH] are predicted to be Rmax,N(25)=85.6±21.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max,N}}(25)=85.6\pm 21.9$\end{document} and Rmax,S(25)=74.4±17.9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max,S}}(25)=74.4\pm 17.9$\end{document}, respectively. Using data at the rising phase, Rmax,N(25)=84.0±26.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max,N}}(25)=84.0\pm 26.7$\end{document} and Rmax,S(25)=88.3±16.8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max,S}}(25)=88.3\pm 16.8$\end{document}. The average values are R‾max,N(25)=84.8±24.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{R}_{\mathrm{max,N}}(25)= 84.8\pm 24.3$\end{document} and R‾max,S(25)=81.4±17.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline{R}_{\mathrm{max,S}}(25)=81.4\pm 17.4$\end{document}. According to the weak correlation between the rise time and Rmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max}}$\end{document}, the peak times of Cycle 25 in the NH and SH are predicted to be November 2023 ±10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pm 10$\end{document} months and July 2024 ±10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pm 10$\end{document} months, respectively. Employing the strong correlation between the amplitude of the total sunspot number [Rmax,T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max,T}}$\end{document}] and those of RH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{H}}$\end{document} in both hemispheres (r=0.99\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r=0.99$\end{document}), the amplitude of Cycle 25 is predicted to be Rmax,T(25)=139.7±28.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{\mathrm{max,T}}(25)=139.7\pm 28.7$\end{document} and 152.3±31.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$152.3\pm 31.5$\end{document} using data at the declining and rising phases, respectively, with an average value of 146.0±30.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$146.0\pm 30.1$\end{document}.
引用
收藏
相关论文
共 45 条
  • [1] Evolution of the Correlation Between the Amplitude of the Solar Cycle and the Sunspot Number Since the Previous Declining Phase in Both Hemispheres
    Du, Zhanle
    [J]. SOLAR PHYSICS, 2022, 297 (09)
  • [2] Phase analysis of sunspot group numbers on both solar hemispheres
    Deng, Lin-Hua
    Qu, Zhong-Quan
    Yan, Xiao-Li
    Wang, Kai-Rang
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2013, 13 (01) : 104 - 114
  • [3] Phase analysis of sunspot group numbers on both solar hemispheres
    Lin-Hua Deng
    Zhong-Quan Qu
    Xiao-Li Yan
    Kai-Rang Wang
    [J]. Research in Astronomy and Astrophysics, 2013, 13 (01) : 104 - 114
  • [4] Correlation between Supergranular Lane Widths and Sunspot Number; A Simple Way to Predict the Amplitude of Sunspot Cycle
    Raju, K. P.
    Singh, Jagdev
    Ravindra, Belur
    Priyal, Muthu
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2023, 959 (02)
  • [5] Prediction of sunspot numbers in the declining phase of solar Cycle 23
    Zhan, LS
    Zhao, HJ
    Liang, HF
    [J]. NEW ASTRONOMY, 2003, 8 (05) : 449 - 456
  • [6] FORECASTING SUNSPOT NUMBERS FOR SOLAR CYCLE 25 USING AUTOREGRESSIVE MODELS FOR BOTH HEMISPHERES OF THE SUN
    Werner, Rolf
    Guineva, Veneta
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (01): : 82 - 89
  • [7] Solar cycle 25 amplitude prediction based on sunspot number increase rate
    Efimenko, V. M.
    Lozitsky, V. G.
    [J]. ADVANCES IN SPACE RESEARCH, 2023, 72 (04) : 1448 - 1453
  • [8] Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25
    Rigozo, N. R.
    Souza Echer, M. P.
    Evangelista, H.
    Nordemann, D. J. R.
    Echer, E.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (11-12) : 1294 - 1299
  • [9] Instantaneous Phase and Amplitude Correlation in the Solar Cycle
    Pablo D. Mininni
    Daniel O. Gomez
    Gabriel B. Mindlin
    [J]. Solar Physics, 2002, 208 : 167 - 179
  • [10] Instantaneous phase and amplitude correlation in the solar cycle
    Mininni, PD
    Gomez, DO
    Mindlin, GB
    [J]. SOLAR PHYSICS, 2002, 208 (01) : 167 - 179