Structure of a generalized class of weights satisfy weighted reverse Hölder’s inequality

被引:0
|
作者
S. H. Saker
M. Zakarya
Ghada AlNemer
H. M. Rezk
机构
[1] Mansoura University,Department of Mathematics, Faculty of Science
[2] New Mansoura University,Department of Mathematics, Faculty of Science
[3] King Khalid University,College of Science, Department of Mathematics
[4] Al-Azhar University,Department of Mathematics, Faculty of Science
[5] Princess Nourah bint Abdulrahman University,Department of Mathematical Science, College of Science
[6] Al-Azhar University,Department of Mathematics, Faculty of Science
关键词
Power mean operators; Discrete Muchenhoupt’s class; Discrete Gehring’s class; Reverse Hölder’s inequality; Self-improving properties; 40D05; 40D25; 42C10; 43A55; 46A35; 46B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will prove some fundamental properties of the power mean operator Mpg(t)=(1ϒ(t)∫0tλ(s)gp(s)ds)1/p,for t∈I⊆R+,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}_{p}g(t)= \biggl( \frac{1}{\Upsilon(t)} \int _{0}^{t} \lambda (s)g^{p} ( s ) \,ds \biggr) ^{1/p},\quad\text{for }t\in \mathbb{I}\subseteq \mathbb{R}_{+}, $$\end{document}of order p and establish some lower and upper bounds of the compositions of operators of different powers, where g, λ are a nonnegative real valued functions defined on I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{I}$\end{document} and ϒ(t)=∫0tλ(s)ds\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Upsilon(t)=\int _{0}^{t}\lambda ( s ) \,ds$\end{document}. Next, we will study the structure of the generalized class Upq(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{U}_{p}^{q}(B)$\end{document} of weights that satisfy the reverse Hölder inequality Mqu≤BMpu,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}_{q}u\leq B\mathcal{M}_{p}u, $$\end{document}for some p<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p< q$\end{document}, p.q≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p.q\neq 0$\end{document}, and B>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B>1$\end{document} is a constant. For applications, we will prove some self-improving properties of weights in the class Upq(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{U}_{p}^{q}(B)$\end{document} and derive the self improving properties of the weighted Muckenhoupt and Gehring classes.
引用
收藏
相关论文
共 50 条
  • [1] Structure of a generalized class of weights satisfy weighted reverse Holder's inequality
    Saker, S. H.
    Zakarya, M.
    AlNemer, Ghada
    Rezk, H. M.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [2] The Weighted Fourier Inequality, Polarity, and Reverse Hölder Inequality
    Ryan Berndt
    [J]. Journal of Fourier Analysis and Applications, 2018, 24 : 1518 - 1538
  • [3] DISCRETE HARDY'S TYPE INEQUALITIES AND STRUCTURE OF DISCRETE CLASS OF WEIGHTS SATISFY REVERSE HOLDER'S INEQUALITY
    Saker, S. H.
    Agarwal, R. P.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (02): : 521 - 541
  • [4] Extrapolation in the scale of generalized reverse Hölder weights
    Theresa C. Anderson
    David Cruz-Uribe
    Kabe Moen
    [J]. Revista Matemática Complutense, 2018, 31 : 263 - 286
  • [5] Properties of a Generalized Class of Weights Satisfying Reverse Holder's Inequality
    Saker, S. H.
    Rabie, S. S.
    Agarwal, R. P.
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [6] On the Reverse Hölder inequality
    A. A. Korenovskii
    [J]. Mathematical Notes, 2007, 81 : 318 - 328
  • [7] On a generalized Hölder inequality
    Ern G Kwon
    Jung E Bae
    [J]. Journal of Inequalities and Applications, 2015
  • [8] The reverse Hölder inequality for power means
    Viktor D. Didenko
    Anatolii A. Korenovskyi
    [J]. Journal of Mathematical Sciences, 2012, 183 (6) : 762 - 771
  • [9] A reverse Hölder inequality for the gradient of solutions to Trudinger’s equation
    Olli Saari
    Sebastian Schwarzacher
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [10] A Weak Reverse Hölder Inequality for Caloric Measure
    Alyssa Genschaw
    Steve Hofmann
    [J]. The Journal of Geometric Analysis, 2020, 30 : 1530 - 1564