It is shown that every almost linear Pexider mappings f, g, h from a unital C*-algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$A$$
\end{document} into a unital C*-algebra ℬ are homomorphisms when f(2nuy) = f(2nu)f(y), g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) hold for all unitaries u ∈ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$A$$
\end{document}, all y ∈ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$A$$
\end{document}, and all n ∈ ℤ, and that every almost linear continuous Pexider mappings f, g, h from a unital C*-algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$A$$
\end{document} of real rank zero into a unital C*-algebra ℬ are homomorphisms when f(2nuy) = f(2nu)f(y), g(2nuy) = g(2nu)g(y) and h(2nuy) = h(2nu)h(y) hold for all u ∈ {v ∈ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$A$$
\end{document} : v = v* and v is invertible}, all y ∈ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$A$$
\end{document} and all n ∈ ℤ.