On the analysis and approximation of some models of fluids over weighted spaces on convex polyhedra

被引:0
|
作者
Enrique Otárola
Abner J. Salgado
机构
[1] Universidad Técnica Federico Santa María,Departamento de Matemática
[2] University of Tennessee,Department of Mathematics
来源
Numerische Mathematik | 2022年 / 151卷
关键词
35Q35; 35Q30; 35R06; 65N15; 65N30; 76Dxx;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Stokes problem over convex polyhedral domains on weighted Sobolev spaces. The weight is assumed to belong to the Muckenhoupt class Aq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}_{\varvec{q}}$$\end{document} for q∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{q} \in (1,\varvec{\infty })$$\end{document}. We show that the Stokes problem is well-posed for all q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{q}$$\end{document}. In addition, we show that the finite element Stokes projection is stable on weighted spaces. With the aid of these tools, we provide well-posedness and approximation results to some classes of non-Newtonian fluids.
引用
收藏
页码:185 / 218
页数:33
相关论文
共 45 条