Convergence of Sums of Appell Polynomials with Infinite Variance

被引:0
|
作者
M. Vaičiulis
机构
[1] Institute of Mathematics and Informatics,
[2] Šiauliai University,undefined
关键词
Appell polynomials; moving average process; long-range dependence;
D O I
10.1023/A:1022919306824
中图分类号
学科分类号
摘要
We investigate the convergence of distributions of partial sums of Appell polynomials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}m(X_t )$$ \end{document} of a long-memory moving average process Xt with i.i.d. innovations ξs in the case where the variance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}_m^2 (X_t ) = \infty $$ \end{document}, and the distribution of #x03BE;0m belongs to the domain of attraction of an α-stable law with 1<α< 2. We prove that the limit distribution of partial sums of Appell polynomials is either an α-stable Lévy process, or an mth order Hermite process, or the sum of two mutually independent processes depending on the values of α, m, and d, where 0<d<1/2 is the long-memory parameter of Xt.
引用
收藏
页码:67 / 82
页数:15
相关论文
共 50 条
  • [1] CONVERGENCE IN DISTRIBUTION OF SUMS OF BIVARIATE APPELL POLYNOMIALS WITH LONG-RANGE DEPENDENCE
    TERRIN, N
    TAQQU, MS
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1991, 90 (01) : 57 - 81
  • [2] Infinite sums for Fibonacci polynomials and Lucas polynomials
    Bing He
    Ruiming Zhang
    [J]. The Ramanujan Journal, 2019, 50 : 621 - 637
  • [3] Infinite sums for Fibonacci polynomials and Lucas polynomials
    He, Bing
    Zhang, Ruiming
    [J]. RAMANUJAN JOURNAL, 2019, 50 (03): : 621 - 637
  • [4] The infinite sums of reciprocals and the partial sums of Chebyshev polynomials
    Yang, Fan
    Li, Yang
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 334 - 348
  • [5] A Generalization of Power and Alternating Power Sums to Any Appell Polynomials
    Kim, Dae San
    Kim, Taekyun
    [J]. FILOMAT, 2017, 31 (01) : 141 - 157
  • [6] INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIALS
    Koshy, T. H. O. M. A. S.
    [J]. FIBONACCI QUARTERLY, 2022, 60 (03): : 194 - 200
  • [7] The convergence of partial sums of interpolating polynomials
    Waterman, Daniel
    Xing, Hualing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 543 - 555
  • [8] INFINITE SUMS INVOLVING GIBONACCI POLYNOMIALS REVISITED
    Koshy, Thomas
    [J]. FIBONACCI QUARTERLY, 2022, 60 (02): : 120 - 125
  • [9] INFINITE SUMS INVOLVING EXTENDED GIBONACCI POLYNOMIALS
    Koshy, Thomas
    [J]. FIBONACCI QUARTERLY, 2022, 60 (04): : 292 - 301
  • [10] INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIALS: GENERALIZATIONS
    Koshy, Thomas
    [J]. FIBONACCI QUARTERLY, 2023, 61 (04): : 305 - 311