Restricted Hausdorff Content, Frostman’s Lemma and Choquet Integrals

被引:0
|
作者
Safari Mukeru
机构
[1] University of South Africa,Department of Decision Sciences
关键词
Hausdorff dimension; Hausdorff content; Frostman lemma; Borel measure; Capacity; Choquet integral; 28A78; 28A12; 31C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the well-known Frostman lemma by showing that for any subset E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} of [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0, 1]$$\end{document} and α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, if the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Hausdorff measure of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} is positive, then there exist a non-zero Borel measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} on [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0, 1]$$\end{document}, a constant C>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C>0$$\end{document} and a subset E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_0$$\end{document} of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} such that μ(I)≤C|I|α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (I) \le C \vert I \vert ^{\alpha }$$\end{document} for any interval I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I$$\end{document} and E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_0$$\end{document} is dense in the support of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. Under an additional condition on E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_0$$\end{document}, we show that μ(B)=μ[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (B) = \mu [0, 1]$$\end{document} for any Borel subset B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} containing E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}. Using the notion of Choquet integral, we extend the notion of capacitarian dimension to arbitrary subset of [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0, 1]$$\end{document} and prove a generalisation of Frostman’s theorem.
引用
收藏
页码:885 / 895
页数:10
相关论文
共 30 条
  • [1] Restricted Hausdorff Content, Frostman's Lemma and Choquet Integrals
    Mukeru, Safari
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (03) : 885 - 895
  • [2] Choquet integrals, Hausdorff content and sparse operators
    Hatano, Naoya
    Kawasumi, Ryota
    Saito, Hiroki
    Tanaka, Hitoshi
    ARCHIV DER MATHEMATIK, 2025, 124 (03) : 311 - 324
  • [3] CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS
    Hatano, Naoya
    Kawasumi, Ryota
    Saito, Hiroki
    Tanaka, Hitoshi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [4] Choquet integrals, weighted Hausdorff content and maximal operators
    Tang, Lin
    GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (03) : 587 - 596
  • [5] Choquet integrals, Hausdorff content and sparse operatorsChoquet integrals, Hausdorff content and sparse operatorsN. Hatano et al.
    Naoya Hatano
    Ryota Kawasumi
    Hiroki Saito
    Hitoshi Tanaka
    Archiv der Mathematik, 2025, 124 (3) : 311 - 324
  • [6] Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator
    Orobitg, J
    Verdera, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 : 145 - 150
  • [7] A NOTE ON CHOQUET INTEGRALS WITH RESPECT TO HAUSDORFF CAPACITY
    ADAMS, DR
    LECTURE NOTES IN MATHEMATICS, 1988, 1302 : 115 - 124
  • [8] CHOQUET INTEGRALS, HAUSDORFF CONTENT AND FRACTIONAL OPERATORS (vol 110, pg 355, 2024)
    Hatano, Naoya
    Kawasumi, Ryota
    Saito, Hiroki
    Tanaka, Hitoshi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [9] Dual of the Choquet spaces with general Hausdorff content
    Saito, Hiroki
    Tanaka, Hitoshi
    STUDIA MATHEMATICA, 2022, : 323 - 336
  • [10] A note on Kesten's Choquet-Deny lemma
    Mentemeier, Sebastian
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 7