Primitively Recursive Categoricity for Unars and Equivalence Structures

被引:0
|
作者
K. V. Blinov
机构
[1] Sobolev Institute of Mathematics,
来源
关键词
primitively recursive categoricity; equivalence structure; unars; decidability with primitively recursive witnesses; injective structure; 510.57;
D O I
暂无
中图分类号
学科分类号
摘要
This continues the study of the primitively recursive categoricity of structures for which there exists a primitively recursive decision algorithm with witnesses of all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Sigma $\end{document}-formulas. Considering the equivalence structures, we find a complete criterion for primitively recursive categoricity over the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ K_{\Sigma} $\end{document}, which coincides with the already known criterion for computable categoricity. As regards unars, the structures with one arbitrary unary function, we distinguish some conditions for primitively recursive categoricity over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ K_{\Sigma} $\end{document} and also for the absence of this categoricity. In particular, we find a full description of primitively recursive injective unars categorical over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ K_{\Sigma} $\end{document}.
引用
收藏
页码:994 / 1009
页数:15
相关论文
共 50 条
  • [1] PRIMITIVELY RECURSIVE CATEGORICITY FOR UNARS AND EQUIVALENCE STRUCTURES
    Blinov, K., V
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (06) : 994 - 1009
  • [2] Effective categoricity of equivalence structures
    Calvert, W
    Cenzer, D
    Harizanov, V
    Morozov, A
    ANNALS OF PURE AND APPLIED LOGIC, 2006, 141 (1-2) : 61 - 78
  • [3] Effective Categoricity of Automatic Equivalence and Nested Equivalence Structures
    Jacob Carson
    Douglas Cenzer
    Jeffrey B. Remmel
    Theory of Computing Systems, 2020, 64 : 1110 - 1139
  • [4] Effective Categoricity of Automatic Equivalence and Nested Equivalence Structures
    Carson, Jacob
    Cenzer, Douglas
    Remmel, Jeffrey B.
    THEORY OF COMPUTING SYSTEMS, 2020, 64 (06) : 1110 - 1139
  • [5] Elementary equivalence of derived structures of free semigroups, unars, and groups
    Pinus A.G.
    Algebra and Logic, 2004, 43 (6) : 408 - 417
  • [6] Degrees of bi-embeddable categoricity of equivalence structures
    Nikolay Bazhenov
    Ekaterina Fokina
    Dino Rossegger
    Luca San Mauro
    Archive for Mathematical Logic, 2019, 58 : 543 - 563
  • [7] Degrees of bi-embeddable categoricity of equivalence structures
    Bazhenov, Nikolay
    Fokina, Ekaterina
    Rossegger, Dino
    San Mauro, Luca
    ARCHIVE FOR MATHEMATICAL LOGIC, 2019, 58 (5-6) : 543 - 563
  • [8] RECURSIVE CATEGORICITY AND RECURSIVE STABILITY
    CROSSLEY, JN
    MANASTER, AB
    MOSES, MF
    ANNALS OF PURE AND APPLIED LOGIC, 1986, 31 (2-3) : 191 - 204
  • [9] RECURSIVE CATEGORICITY AND PERSISTENCE
    MILLAR, T
    JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (02) : 430 - 434
  • [10] Primitive Recursive Fields and Categoricity
    I. Sh. Kalimullin
    R. Miller
    Algebra and Logic, 2019, 58 : 95 - 99