An attempt to improve Kessler-type parameterization of warm cloud microphysical conversion processes using CloudSat observations

被引:0
|
作者
Jinfang Yin
Donghai Wang
Guoqing Zhai
机构
[1] Chinese Academy of Meteorological Sciences,State Key Laboratory of Severe Weather
[2] Zhejiang University,Department of Earth Science
来源
关键词
autoconversion; microphysical parameterization; threshold of autoconversion;
D O I
暂无
中图分类号
学科分类号
摘要
Improvements to the Kessler-type parameterization of warm cloud microphysical conversion processes (also called autoconversion) are proposed based on a large number of CloudSat observations between June 2006 and April 2011 over Asian land areas. The emphasis is given to the vertical distribution of liquid water content (LWC), particularly, the threshold values of LWC for autoconversion. The results warrant a new approach to the numerical parameterization of autoconversion in warm clouds. One feature of this new approach is that the autoconversion threshold, which has been treated as a constant in previous parameterization schemes, is diagnosed as a function of altitude by using a relationship between LWC and height (H) derived from CloudSat observations: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LWC_{dig} = - 500.0\ln \left( {\frac{H} {{9492.2}}} \right)$$\end{document}. Under this framework, the threshold LWC decreases with increasing H, allowing autoconversion to occur in clouds with low LWC (approximately 0.3 g m−3) at levels above 5.5 km. Autoconversion rates calculated based on the new parameterization are compared to those calculated based on several commonly used parameterization schemes over a range of LWCs from 0.01 to 1.0 g m−3. The new scheme provides reasonable simulations of autoconversion at various vertical levels.
引用
收藏
页码:82 / 92
页数:10
相关论文
共 16 条
  • [1] An Attempt to Improve Kessler-Type Parameterization of Warm Cloud Microphysical Conversion Processes Using CloudSat Observations
    Yin Jinfang
    Wang Donghai
    Zhai Guoqing
    [J]. JOURNAL OF METEOROLOGICAL RESEARCH, 2015, 29 (01) : 82 - 92
  • [2] An Attempt to Improve Kessler-Type Parameterization of Warm Cloud Microphysical Conversion Processes Using Cloud Sat Observations
    尹金方
    王东海
    翟国庆
    [J]. Journal of Meteorological Research, 2015, 29 (01) : 82 - 92
  • [3] A parameterization of warm cloud microphysical conversion processes
    Beheng, K. D.
    [J]. ATMOSPHERIC RESEARCH, 1994, 33 (1-4) : 193 - 206
  • [4] Evaluation of an ice cloud parameterization based on a dynamical-microphysical lifetime concept using CloudSat observations and the ERA-Interim reanalysis
    Ma, H. -Y.
    Koehler, M.
    Li, J. -L. F.
    Farrara, J. D.
    Mechoso, C. R.
    Forbes, R. M.
    Waliser, D. E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [5] Global identification of warm cloud microphysical processes with combined use of A-Train observations
    Suzuki, Kentaroh
    Stephens, Graeme L.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (08)
  • [6] Understanding the Microphysical Control and Spatial-Temporal Variability of Warm Rain Probability Using CloudSat and MODIS Observations
    Zhang, Zhibo
    Oreopoulos, Lazaros
    Lebsock, Matthew D.
    Mechem, David B.
    Covert, Justin
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (10)
  • [7] The Evaluation of CloudSat and CALIPSO Ice Microphysical Products Using Ground-Based Cloud Radar and Lidar Observations
    Protat, A.
    Delanoe, J.
    O'Connor, E. J.
    L'Ecuyer, T. S.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (05) : 793 - 810
  • [8] Observational Constraints on Warm Cloud Microphysical Processes Using Machine Learning and Optimization Techniques
    Chiu, J. Christine
    Yang, C. Kevin
    van Leeuwen, Peter Jan
    Feingold, Graham
    Wood, Robert
    Blanchard, Yann
    Mei, Fan
    Wang, Jian
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (02)
  • [9] Diagnosis of the Warm Rain Process in Cloud-Resolving Models Using Joint CloudSat and MODIS Observations
    Suzuki, Kentaroh
    Stephens, Graeme L.
    van den Heever, Susan C.
    Nakajima, Takashi Y.
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2011, 68 (11) : 2655 - 2670
  • [10] Evaluating Warm and Cold Rain Processes in Cloud Microphysical Schemes Using OLYMPEX Field Measurements
    Naeger, Aaron R.
    Colle, Brian A.
    Zhou, Na
    Molthan, Andrew
    [J]. MONTHLY WEATHER REVIEW, 2020, 148 (05) : 2163 - 2190