Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production

被引:0
|
作者
Yi Liu
Jihua Zhang
Yapeng Li
Qizhu Qian
Ziyun Li
Yin Zhu
Genqiang Zhang
机构
[1] University of Science and Technology of China,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering
[2] Guizhou Education University,Guizhou Provincial Key Laboratory of Computational Nano
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Replacing sluggish oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) to produce hydrogen has been considered as a more energy-efficient strategy than water splitting. However, the relatively high cell voltage in two-electrode system and the required external electric power hinder its scalable applications, especially in mobile devices. Herein, we report a bifunctional P, W co-doped Co3N nanowire array electrode with remarkable catalytic activity towards both HzOR (−55 mV at 10 mA cm−2) and hydrogen evolution reaction (HER, −41 mV at 10 mA cm−2). Inspiringly, a record low cell voltage of 28 mV is required to achieve 10 mA cm−2 in two-electrode system. DFT calculations decipher that the doping optimized H* adsorption/desorption and dehydrogenation kinetics could be the underlying mechanism. Importantly, a self-powered H2 production system by integrating a direct hydrazine fuel cell with a hydrazine splitting electrolyzer can achieve a decent rate of 1.25 mmol h−1 at room temperature.
引用
收藏
相关论文
共 3 条
  • [1] Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production
    Liu, Yi
    Zhang, Jihua
    Li, Yapeng
    Qian, Qizhu
    Li, Ziyun
    Zhu, Yin
    Zhang, Genqiang
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Cooperative Ni(Co)-Ru-P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self-powered H2 Production
    Hu, Yanmin
    Chao, Tingting
    Li, Yapeng
    Liu, Peigen
    Zhao, Tonghui
    Yu, Ge
    Chen, Cai
    Liang, Xiao
    Jin, Huile
    Niu, Shuwen
    Chen, Wei
    Wang, Dingsheng
    Li, Yadong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (35)
  • [3] Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation
    Wang, Jingshu
    Guan, Xiya
    Li, Haibo
    Zeng, Suyuan
    Li, Rui
    Yao, Qingxia
    Chen, Hongyan
    Zheng, Yao
    Qu, Konggang
    [J]. NANO ENERGY, 2022, 100