Dynamics of a reaction–diffusion SIRS model with general incidence rate in a heterogeneous environment

被引:0
|
作者
Eric Avila-Vales
Ángel G. C. Pérez
机构
[1] Universidad Autónoma de Yucatán,Facultad de Matemáticas
关键词
Reaction–diffusion; Global stability; Uniform persistence; Bifurcation analysis; 35K57; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a diffusive SIRS-type epidemic model with transfer from the infectious to the susceptible class. Our model includes a general nonlinear incidence rate and spatially heterogeneous diffusion coefficients. We compute the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0$$\end{document} of our model and establish the global stability of the disease-free steady state when R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0<1$$\end{document}. Furthermore, we study the uniform persistence when R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_0>1$$\end{document} and perform a bifurcation analysis for a special case of our model. Some numerical simulations are presented to illustrate the dynamics of the solutions as the model parameters are varied.
引用
收藏
相关论文
共 50 条
  • [1] Dynamics of a reaction-diffusion SIRS model with general incidence rate in a heterogeneous environment
    Avila-Vales, Eric
    Perez, Angel G. C.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [2] Stability and Bifurcation Analysis of a Reaction-Diffusion SIRS Epidemic Model with the General Saturated Incidence Rate
    She, Gaoyang
    Yi, Fengqi
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (06)
  • [3] Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate
    Zhou, Jinling
    Yang, Yu
    Zhang, Tonghua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 835 - 859
  • [4] Propagation dynamics in an SIRS model with general incidence functions
    Chen, Wenhao
    Lin, Guo
    Pan, Shuxia
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 6751 - 6775
  • [5] DYNAMICAL ANALYSIS OF A DIFFUSIVE SIRS MODEL WITH GENERAL INCIDENCE RATE
    Yang, Yu
    Zou, Lan
    Zhang, Tonghua
    Xu, Yancong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07): : 2433 - 2451
  • [6] Bifurcations of an SIRS epidemic model with a general saturated incidence rate
    Zhang, Fang
    Cui, Wenzhe
    Dai, Yanfei
    Zhao, Yulin
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (11) : 10710 - 10730
  • [7] Dynamics of a reaction-diffusion SVIR model in a spatial heterogeneous environment
    Zhang, Chao
    Gao, Jianguo
    Sun, Hongquan
    Wang, Jinliang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533
  • [8] Qualitative analysis of a reaction-diffusion SIRS epidemic model with nonlinear incidence rate and partial immunity
    Wang, Jianpeng
    Teng, Zhidong
    Dai, Binxiang
    [J]. INFECTIOUS DISEASE MODELLING, 2023, 8 (03) : 881 - 911
  • [9] Global Stability of a Caputo Fractional SIRS Model with General Incidence Rate
    Ammi, Moulay Rchid Sidi
    Tahiri, Mostafa
    Torres, Delfim F. M.
    [J]. MATHEMATICS IN COMPUTER SCIENCE, 2021, 15 (01) : 91 - 105
  • [10] ANALYSIS OF A DEGENERATED DIFFUSION SVEQIRV EPIDEMIC MODEL WITH GENERAL INCIDENCE IN A SPACE HETEROGENEOUS ENVIRONMENT
    Luo, Yantao
    Yuan, Yunqiang
    Teng, Zhidong
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2704 - 2732