A derivative-free trust-region algorithm for composite nonsmooth optimization

被引:0
|
作者
Geovani Nunes Grapiglia
Jinyun Yuan
Ya-xiang Yuan
机构
[1] Universidade Federal do Paraná,Departamento de Matemática
[2] Centro Politécnico,State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science
[3] The Capes Foundation,undefined
[4] Ministry of Education of Brazil,undefined
[5] Chinese Academy of Sciences,undefined
来源
关键词
Nonsmooth optimization; Nonlinear programming; Trust-region methods; Derivative-free optimization; Global convergence; Worst-case complexity; 49J53; 90C30; 58C15; 49M37; 90C56; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
The derivative-free trust-region algorithm proposed by Conn et al. (SIAM J Optim 20:387–415, 2009) is adapted to the problem of minimizing a composite function Φ(x)=f(x)+h(c(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi (x)=f(x)+h(c(x))$$\end{document}, where f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} and c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} are smooth, and h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} is convex but may be nonsmooth. Under certain conditions, global convergence and a function-evaluation complexity bound are proved. The complexity result is specialized to the case when the derivative-free algorithm is applied to solve equality-constrained problems. Preliminary numerical results with minimax problems are also reported.
引用
收藏
页码:475 / 499
页数:24
相关论文
共 50 条
  • [1] A derivative-free trust-region algorithm for composite nonsmooth optimization
    Grapiglia, Geovani Nunes
    Yuan, Jinyun
    Yuan, Ya-xiang
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (02): : 475 - 499
  • [2] A trust-region derivative-free algorithm for constrained optimization
    Conejo, P. D.
    Karas, E. W.
    Pedroso, L. G.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (06): : 1126 - 1145
  • [3] TRFD: A derivative-free trust-region method based on finite differences for composite nonsmooth optimization
    Department of Mathematical Engineering, ICTEAM Institute, Université Catholique de Louvain, Louvain-la-Neuve
    B-1348, Belgium
    [J]. arXiv,
  • [4] A DERIVATIVE-FREE TRUST-REGION ALGORITHM FOR UNCONSTRAINED OPTIMIZATION WITH CONTROLLED
    Takaki, Jun
    Yamashita, Nobuo
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2011, 1 (01): : 117 - 145
  • [5] A progressive barrier derivative-free trust-region algorithm for constrained optimization
    Charles Audet
    Andrew R. Conn
    Sébastien Le Digabel
    Mathilde Peyrega
    [J]. Computational Optimization and Applications, 2018, 71 : 307 - 329
  • [6] A globally convergent trust-region algorithm for unconstrained derivative-free optimization
    Priscila S. Ferreira
    Elizabeth W. Karas
    Mael Sachine
    [J]. Computational and Applied Mathematics, 2015, 34 : 1075 - 1103
  • [7] A derivative-free trust-region algorithm for reliability-based optimization
    Tian Gao
    Jinglai Li
    [J]. Structural and Multidisciplinary Optimization, 2017, 55 : 1535 - 1539
  • [8] TRUST-REGION METHODS FOR THE DERIVATIVE-FREE OPTIMIZATION OF NONSMOOTH BLACK-BOX FUNCTIONS
    Liuzzi, Giampaolo
    Lucidi, Stefano
    Rinaldi, Francesco
    Vicente, Luis Nunes
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 3012 - 3035
  • [9] A globally convergent trust-region algorithm for unconstrained derivative-free optimization
    Ferreira, Priscila S.
    Karas, Elizabeth W.
    Sachine, Mael
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (03): : 1075 - 1103
  • [10] A progressive barrier derivative-free trust-region algorithm for constrained optimization
    Audet, Charles
    Conn, Andrew R.
    Le Digabel, Sebastien
    Peyrega, Mathilde
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (02) : 307 - 329