Model-Based Clustering Based on Variational Learning of Hierarchical Infinite Beta-Liouville Mixture Models

被引:0
|
作者
Wentao Fan
Nizar Bouguila
机构
[1] Huaqiao University,Department of Computer Science and Technology
[2] Concordia University,The Concordia Institute for Information Systems Engineering (CIISE)
来源
Neural Processing Letters | 2016年 / 44卷
关键词
Mixture models; Beta-Liouville; Variational Bayes ; Nonparametric Bayesian; Hierarchical Dirichlet process; Visual scenes categorization;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we develop a statistical framework for data clustering which uses hierarchical Dirichlet processes and Beta-Liouville distributions. The parameters of this framework are leaned using two variational Bayes approaches. The first one considers batch settings and the second one takes into account the dynamic nature of real data. Experimental results based on a challenging problem namely visual scenes categorization demonstrate the merits of the proposed framework.
引用
收藏
页码:431 / 449
页数:18
相关论文
共 50 条
  • [1] Model-Based Clustering Based on Variational Learning of Hierarchical Infinite Beta-Liouville Mixture Models
    Fan, Wentao
    Bouguila, Nizar
    [J]. NEURAL PROCESSING LETTERS, 2016, 44 (02) : 431 - 449
  • [2] Variational learning for finite Beta-Liouville mixture models
    LAI Yu-ping
    ZHOU Ya-jian
    PING Yuan
    GUO Yu-cui
    YANG Yi-xian
    [J]. The Journal of China Universities of Posts and Telecommunications, 2014, 21 (02) : 98 - 103
  • [3] Variational Learning of Finite Beta-Liouville Mixture Models Using Component Splitting
    Fan, Wentao
    Bouguila, Nizar
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [4] Variational Learning for the Inverted Beta-Liouville Mixture Model and Its Application to Text Categorization
    Ling, Yongfa
    Guan, Wenbo
    Ruan, Qiang
    Song, Heping
    Lai, Yuping
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2022, 7 (05): : 76 - 84
  • [5] A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models
    Hu, Can
    Fan, Wentao
    Du, Ji-Xiang
    Bouguila, Nizar
    [J]. NEUROCOMPUTING, 2019, 333 : 110 - 123
  • [6] Markov Chain Monte Carlo-Based Bayesian Inference for Learning Finite and Infinite Inverted Beta-Liouville Mixture Models
    Bourouis, Sami
    Alroobaea, Roobaea
    Rubaiee, Saeed
    Andejany, Murad
    Almansour, Fahad M.
    Bouguila, Nizar
    [J]. IEEE ACCESS, 2021, 9 : 71170 - 71183
  • [7] Bayesian Estimation of the Inverted Beta-Liouville Mixture Models with Extended Variational Inference
    Guan, Wenbo
    Wang, Shilin
    Ma, Xiongtao
    Ling, Yongfa
    Cao, Huirui
    Yang, Fan
    [J]. INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [8] Online Facial Expression Recognition Based on Finite Beta-Liouville Mixture Models
    Fan, Wentao
    Bouguila, Nizar
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER AND ROBOT VISION (CRV), 2013, : 37 - 44
  • [9] Finite mixture models and model-based clusteringFinite mixture models and model-based clustering
    Melnykov, Volodymyr
    Maitra, Ranjan
    [J]. STATISTICS SURVEYS, 2010, 4 : 80 - 116
  • [10] Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions via Variational Inference
    Fan, Wentao
    Bouguila, Nizar
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (11) : 1850 - 1862