Hybrid Warping Fusion for Video Frame Interpolation

被引:0
|
作者
Yu Li
Ye Zhu
Ruoteng Li
Xintao Wang
Yue Luo
Ying Shan
机构
[1] International Digital Economy Academy (IDEA),ARC Lab
[2] Tencent PCG,undefined
[3] National University of Singapore,undefined
来源
关键词
Video frame interpolation; Hybrid warping; View synthesis;
D O I
暂无
中图分类号
学科分类号
摘要
Video frame interpolation aims to synthesize new intermediate frames between existing ones, which is an important task in video enhancement. A classic direction in this field is flow-based which estimates motions in the form of optical flow, warps the frames, and synthesizes the final results. In this work, we explicitly investigate the warping step and propose a way to combine the strength from using both forward and backward warping. Our method, named HWFI, introduces hybrid warping fusion for frame interpolation. We also include edge information explicitly in our pipeline and employ channel attention in our synthesis network. Compared to the latest state-of-the-art method that only uses forward warping, our method produces better results with higher quality, especially in edge regions. Extensive experiments show that our method can obtain the best results qualitatively and quantitatively on multiple benchmark datasets.
引用
收藏
页码:2980 / 2993
页数:13
相关论文
共 50 条
  • [1] Hybrid Warping Fusion for Video Frame Interpolation
    Li, Yu
    Zhu, Ye
    Li, Ruoteng
    Wang, Xintao
    Luo, Yue
    Shan, Ying
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (12) : 2980 - 2993
  • [2] Multi-Scale Warping for Video Frame Interpolation
    Choi, Whan
    Koh, Yeong Jun
    Kim, Chang-Su
    [J]. IEEE ACCESS, 2021, 9 : 150470 - 150479
  • [3] Forward Warping-Based Video Frame Interpolation Using a Motion Selective Network
    Heo, Jeonghwan
    Jeong, Jechang
    [J]. ELECTRONICS, 2022, 11 (16)
  • [4] A New Approach to Video Coding Leveraging Hybrid Coding and Video Frame Interpolation
    Brascher, Andre Beims
    da Silveira, Gabriela Furtado
    Cancellier, Luiz Henrique
    Seidel, Ismael
    Grellert, Mateus
    Guntzel, Jose Luis
    [J]. 2023 36TH SBC/SBMICRO/IEEE/ACM SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 2023, : 161 - 166
  • [5] Video Frame Interpolation Transformer
    Shi, Zhihao
    Xu, Xiangyu
    Liu, Xiaohong
    Chen, Jun
    Yang, Ming-Hsuan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17461 - 17470
  • [6] Blurry Video Frame Interpolation
    Shen, Wang
    Bao, Wenbo
    Zhai, Guangtao
    Chen, Li
    Min, Xiongkuo
    Gao, Zhiyong
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 5113 - 5122
  • [7] PhaseNet for Video Frame Interpolation
    Meyer, Simone
    Djelouah, Abdelaziz
    McWilliams, Brian
    Sorkine-Hornung, Alexander
    Gross, Markus
    Schroers, Christopher
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 498 - 507
  • [8] Video Frame Interpolation with Transformer
    Lu, Liying
    Wu, Ruizheng
    Lin, Huaijia
    Lu, Jiangbo
    Jia, Jiaya
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 3522 - 3532
  • [9] Video frame interpolation via structure-motion based iterative fusion
    Li, Xi
    Cao, Meng
    Tang, Yingying
    Johnston, Scott
    Hong, Zhendong
    Ma, Huimin
    Shan, Jiulong
    [J]. arXiv, 2021,
  • [10] EFI-Net: Video Frame Interpolation from Fusion of Events and Frames
    Paikin, Genady
    Ater, Yotam
    Shaul, Roy
    Soloveichik, Evgeny
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1291 - 1301