Completely regular clique graphs

被引:0
|
作者
Hiroshi Suzuki
机构
[1] International Christian University,
来源
关键词
Distance-regular graph; Association scheme; Subconstituent algebra; Terwilliger algebra; Completely regular code; Distance-semiregular graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let Γ=(X,R) be a connected graph. Then Γ is said to be a completely regular clique graph of parameters (s,c) with s≥1 and c≥1, if there is a collection \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document} of completely regular cliques of size s+1 such that every edge is contained in exactly c members of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}$\end{document}. In this paper, we show that the parameters of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C\in\mathcal{C}$\end{document} as a completely regular code do not depend on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C\in\mathcal{C}$\end{document}. As a by-product we have that all completely regular clique graphs are distance-regular whenever \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document} consists of edges. We investigate the case when Γ is distance-regular, and show that Γ is a completely regular clique graph if and only if it is a bipartite half of a distance-semiregular graph.
引用
收藏
页码:233 / 244
页数:11
相关论文
共 50 条