Pseudo-differential operators in the generalized weinstein setting

被引:0
|
作者
Hassen Ben Mohamed
Youssef Bettaibi
机构
[1] University of Gabes,Department of Mathematics, Faculty of Sciences
关键词
Generalized Weinstein operator; Generalized Weinstein Transform; Sobolev spaces; Pseudo-differential operators; 32A50; 32B10; 46E35; 46F12; 43A32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the generalized Weinstein operator ΔWd,α,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{W}^{d,\alpha ,n}$$\end{document}. For n=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=0,$$\end{document} we regain the classical Weinstein operator ΔWα,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{W}^{\alpha ,d}$$\end{document}. We introduce and study the Sobolev spaces associated with the generalized Weinstein operator and investigate their properties. Next, we introduce a class of symbols and their associated pseudo-differential operators.
引用
收藏
页码:3345 / 3361
页数:16
相关论文
共 50 条