Characterization of order 3 algebraic immersed minimal surfaces of S3

被引:0
|
作者
Oscar Mario Perdomo
机构
[1] Lehigh University,Department of Mathematics
来源
Geometriae Dedicata | 2007年 / 129卷
关键词
Minimal surfaces; Alegbraic sufaces; 53A10; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi M\to S^3$$\end{document} is a minimal immersion of a compact surface and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(M)= S^3\cap f^{-1}(0)$$\end{document} , for some homogeneous polynomial f of degree 3 on R4, then, M is a torus and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(M)$$\end{document} is one of the examples given by Lawson (1970, Complete minimal surfaces in S3. Ann. Math. 92(2), 335–374).
引用
收藏
页码:23 / 34
页数:11
相关论文
共 50 条