Conformal oscillator representations of orthogonal Lie algebras

被引:0
|
作者
XiaoPing Xu
机构
[1] Chinese Academy of Sciences,Hua Loo
[2] Chinese Academy of Sciences,Keng Key Laboratory of Mathematics
来源
Science China Mathematics | 2016年 / 59卷
关键词
orthogonal Lie algebra; differential operator; oscillator representation; irreducible module; polynomial algebra; exponential-polynomial function; 17B10; 22E46;
D O I
暂无
中图分类号
学科分类号
摘要
The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n, C) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of the orthogonal Lie algebra o(n+2, C). Letting these operators act on the space of exponential-polynomial functions that depend on a parametric vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec a \in \mathbb{C}^n $\end{document}, we prove that the space forms an irreducible o(n+2, C)-module for any c ∈ C; if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vec a$\end{document} is not on a certain hypersurface. By partially swapping differential operators and multiplication operators, we obtain more general differential operator representations of o(n+2, C) on the polynomial algebra C in n variables. Moreover, we prove that C forms an infinite-dimensional irreducible weight o(n+2, C)-module with finite-dimensional weight subspaces if c ∉ Z/2.
引用
收藏
页码:37 / 48
页数:11
相关论文
共 50 条