The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n, C) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of the orthogonal Lie algebra o(n+2, C). Letting these operators act on the space of exponential-polynomial functions that depend on a parametric vector \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\vec a \in \mathbb{C}^n $\end{document}, we prove that the space forms an irreducible o(n+2, C)-module for any c ∈ C; if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\vec a$\end{document} is not on a certain hypersurface. By partially swapping differential operators and multiplication operators, we obtain more general differential operator representations of o(n+2, C) on the polynomial algebra C in n variables. Moreover, we prove that C forms an infinite-dimensional irreducible weight o(n+2, C)-module with finite-dimensional weight subspaces if c ∉ Z/2.
机构:
Chinese Acad Sci, HUA Loo Keng Key Lab Math, Beijing 100190, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R ChinaChinese Acad Sci, HUA Loo Keng Key Lab Math, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Hua Loo Keng Key Math Lab, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Math, Hua Loo Keng Key Math Lab, Beijing 100190, Peoples R China
Xu, Xiaoping
Zhao, Yufeng
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Math, Hua Loo Keng Key Math Lab, Beijing 100190, Peoples R China
机构:
China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Xuzhou Univ Technol, Sch Math & Phys, Xuzhou, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Han, Xiu
Wang, Dengyin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
Wang, Dengyin
Xia, Chunguang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R ChinaChina Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
机构:
Chinese Acad Sci, Inst Math, HLM, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Math, HLM, Acad Math & Syst Sci, Beijing 100190, Peoples R China
机构:
Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Math, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China