On density of compactly supported smooth functions in fractional Sobolev spaces

被引:0
|
作者
Bartłomiej Dyda
Michał Kijaczko
机构
[1] Wrocław University of Science and Technology,Faculty of Pure and Applied Mathematics
来源
关键词
Fractional Sobolev spaces; Smooth functions; Density; Assouad codimension; Assouad dimension; Fractional Hardy inequality; Primary 46E35; Secondary 35A15; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We describe some sufficient conditions, under which smooth and compactly supported functions are or are not dense in the fractional Sobolev space Ws,p(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p}(\Omega )$$\end{document} for an open, bounded set Ω⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^{d}$$\end{document}. The density property is closely related to the lower and upper Assouad codimension of the boundary of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document}. We also describe explicitly the closure of Cc∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{c}^{\infty }(\Omega )$$\end{document} in Ws,p(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p}(\Omega )$$\end{document} under some mild assumptions about the geometry of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document}. Finally, we prove a variant of a fractional order Hardy inequality.
引用
收藏
页码:1855 / 1867
页数:12
相关论文
共 50 条