Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review

被引:0
|
作者
Sunday Adeola Ajagbe
Matthew O. Adigun
机构
[1] First Technical University Ibadan,Department of Computer & Industrial Production Engineering
[2] University of Zululand,Department of Computer Science
来源
关键词
Artificial intelligence (AI); Deep learning (DL); Infectious diseases (IDs); Machine learning (ML); Optimization techniques; Pandemic;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations.
引用
收藏
页码:5893 / 5927
页数:34
相关论文
共 50 条
  • [1] Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review
    Ajagbe, Sunday Adeola
    Adigun, Matthew O.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (2) : 5893 - 5927
  • [2] Analysis of Deep Learning Techniques for Prediction of Eye Diseases: A Systematic Review
    Bali, Akanksha
    Mansotra, Vibhakar
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (01) : 487 - 520
  • [3] Analysis of Deep Learning Techniques for Prediction of Eye Diseases: A Systematic Review
    Akanksha Bali
    Vibhakar Mansotra
    Archives of Computational Methods in Engineering, 2024, 31 : 487 - 520
  • [4] A systematic review of deep learning techniques for plant diseases
    Pacal, Ishak
    Kunduracioglu, Ismail
    Alma, Mehmet Hakki
    Deveci, Muhammet
    Kadry, Seifedine
    Nedoma, Jan
    Slany, Vlastimil
    Martinek, Radek
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (11)
  • [5] Machine learning techniques in bankruptcy prediction: A systematic literature review
    Dasilas, Apostolos
    Rigani, Anna
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [6] Deep learning for crop yield prediction: a systematic literature review
    Oikonomidis, Alexandros
    Catal, Cagatay
    Kassahun, Ayalew
    NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE, 2023, 51 (01) : 1 - 26
  • [7] Software fault prediction using data mining, machine learning and deep learning techniques: A systematic literature review
    Batool, Iqra
    Khan, Tamim Ahmed
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [8] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    International Journal of Advanced Computer Science and Applications, 2024, 15 (10) : 1155 - 1173
  • [9] Systematic review of deep learning techniques in plant disease detection
    Nagaraju, M.
    Chawla, Priyanka
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2020, 11 (03) : 547 - 560
  • [10] A Systematic Review of Deep Learning Techniques for Phishing Email Detection
    Kyaw, Phyo Htet
    Gutierrez, Jairo
    Ghobakhlou, Akbar
    ELECTRONICS, 2024, 13 (19)