Catenoidal layers for the Allen-Cahn equation in bounded domains

被引:0
|
作者
Oscar Agudelo
Manuel Del Pino
Juncheng Wei
机构
[1] Západočescká Univerzita v Plzni,Department of Mathematics
[2] Universidad de Chile,Departamento de Ingeniería Matemática and CMM
[3] University of British Columbia,Department of Mathematics
关键词
Allen-Cahn equation; Critical minimal surfaces; Critical catenoid; Infinite dimensional gluing method; Neumann boundary condition; 35J60; 35B25; 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new family of solutions to the singularly perturbed Allen-Cahn equation α2Δu + u(1 − u2) = 0 in a smooth bounded domain Ω ⊂ R3, with Neumann boundary condition and α > 0 a small parameter. These solutions have the property that as α → 0, their level sets collapse onto a bounded portion of a complete embedded minimal surface with finite total curvature intersecting ∂Ω orthogonally and that is non-degenerate respect to ∂Ω. The authors provide explicit examples of surfaces to which the result applies.
引用
收藏
页码:13 / 44
页数:31
相关论文
共 50 条
  • [1] Catenoidal Layers for the Allen-Cahn Equation in Bounded Domains
    Oscar AGUDELO
    Manuel DEL PINO
    Juncheng WEI
    ChineseAnnalsofMathematics,SeriesB, 2017, (01) : 13 - 44
  • [2] Catenoidal Layers for the Allen-Cahn Equation in Bounded Domains
    Agudelo, Oscar
    Del Pino, Manuel
    Wei, Juncheng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 13 - 44
  • [3] Interior layers for an inhomogeneous Allen-Cahn equation
    Du, Zhuoran
    Gui, Changfeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (02) : 215 - 239
  • [4] Solutions with multiple catenoidal ends to the Allen-Cahn equation in R3
    Agudelo, Oscar
    del Pino, Manuel
    Wei, Juncheng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (01): : 142 - 218
  • [5] TRANSITION LAYERS FOR A SPATIALLY INHOMOGENEOUS ALLEN-CAHN EQUATION IN MULTI-DIMENSIONAL DOMAINS
    Li, Fang
    Nakashima, Kimie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (04) : 1391 - 1420
  • [6] CONVERGENCE OF THE ALLEN-CAHN EQUATION WITH TRANSPORT TERM IN A BOUNDED DOMAIN
    Tsukamoto, Yuki
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2024, 37 (3-4) : 207 - 236
  • [7] A generalization of the Allen-Cahn equation
    Miranville, Alain
    Quintanilla, Ramon
    IMA JOURNAL OF APPLIED MATHEMATICS, 2015, 80 (02) : 410 - 430
  • [8] CLUSTERED INTERIOR PHASE TRANSITION LAYERS FOR AN INHOMOGENEOUS ALLEN-CAHN EQUATION IN HIGHER DIMENSIONAL DOMAINS
    Yang, Jun
    Yang, Xiaolin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 303 - 340
  • [9] Internal layers intersecting the boundary of domain in the Allen-Cahn equation
    Toshiyuki Iibun
    Kunimochi Sakamoto
    Japan Journal of Industrial and Applied Mathematics, 2001, 18 : 697 - 738
  • [10] TRANSITION LAYERS FOR AN INHOMOGENEOUS ALLEN-CAHN EQUATION IN RIEMANNIAN MANIFOLDS
    Du, Zhuoran
    Lai, Baishun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1407 - 1429