Three-dimensional memristor circuits as complex neural networks

被引:2
|
作者
Peng Lin
Can Li
Zhongrui Wang
Yunning Li
Hao Jiang
Wenhao Song
Mingyi Rao
Ye Zhuo
Navnidhi K. Upadhyay
Mark Barnell
Qing Wu
J. Joshua Yang
Qiangfei Xia
机构
[1] University of Massachusetts,Department of Electrical and Computer Engineering
[2] Air Force Research Laboratory Information Directorate,Department of Mechanical Engineering
[3] Massachusetts Institute of Technology,undefined
来源
Nature Electronics | 2020年 / 3卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Constructing a computing circuit in three dimensions (3D) is a necessary step to enable the massive connections and efficient communications required in complex neural networks. 3D circuits based on conventional complementary metal–oxide–semiconductor transistors are, however, difficult to build because of challenges involved in growing or stacking multilayer single-crystalline silicon channels. Here we report a 3D circuit composed of eight layers of monolithically integrated memristive devices. The vertically aligned input and output electrodes in our 3D structure make it possible to directly map and implement complex neural networks. As a proof-of-concept demonstration, we programmed parallelly operated kernels into the 3D array, implemented a convolutional neural network and achieved software-comparable accuracy in recognizing handwritten digits from the Modified National Institute of Standard and Technology database. We also demonstrated the edge detection of moving objects in videos by applying groups of Prewitt filters in the 3D array to process pixels in parallel.
引用
收藏
页码:225 / 232
页数:7
相关论文
共 50 条
  • [1] Three-dimensional memristor circuits as complex neural networks
    Lin, Peng
    Li, Can
    Wang, Zhongrui
    Li, Yunning
    Jiang, Hao
    Song, Wenhao
    Rao, Mingyi
    Zhuo, Ye
    Upadhyay, Navnidhi K.
    Barnell, Mark
    Wu, Qing
    Yang, J. Joshua
    Xia, Qiangfei
    [J]. NATURE ELECTRONICS, 2020, 3 (04) : 225 - 232
  • [2] Three-dimensional neural networks
    Bricker, J
    MicheliTzanakou, E
    [J]. PROCEEDINGS OF THE IEEE TWENTY-SECOND ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 1996, : 123 - 124
  • [3] Three-Dimensional Quaternionic Hopfield Neural Networks
    Kobayashi, Masaki
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (07): : 1575 - 1577
  • [4] Long-Term Accuracy Enhancement of Binary Neural Networks Based on Optimized Three-Dimensional Memristor Array
    Yu, Jie
    Zhang, Woyu
    Dong, Danian
    Sun, Wenxuan
    Lai, Jinru
    Zheng, Xu
    Gong, Tiancheng
    Li, Yi
    Shang, Dashan
    Xing, Guozhong
    Xu, Xiaoxin
    [J]. MICROMACHINES, 2022, 13 (02)
  • [5] Three-dimensional non-linear complex model of dynamic memristor switching
    Chernov, A. A.
    Islamov, D. R.
    Pik'nik, A. A.
    Perevalov, T. V.
    Gritsenko, V. A.
    [J]. NONVOLATILE MEMORIES 5, 2017, 75 (32): : 95 - 104
  • [6] Three-dimensional integrated circuits
    Topol, Anna W.
    La Tulipe Jr., Douglas C.
    Shi, Leathen
    Frank, David J.
    Bernstein, Kerry
    Steen, Steven E.
    Kumar, Arvind
    Singco, Gilbert U.
    Young, Albert M.
    Guarini, Kathryn W.
    Ieong, Meikei
    [J]. IBM Journal of Research and Development, 2006, 50 (4-5): : 491 - 506
  • [7] Three-dimensional integrated circuits
    Topol, A. W.
    La Tulipe, D. C., Jr.
    Shi, L.
    Frank, D. J.
    Bernstein, K.
    Steen, S. E.
    Kumar, A.
    Singco, G. U.
    Young, A. M.
    Guarini, K. W.
    Ieong, M.
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2006, 50 (4-5) : 491 - 506
  • [8] Three-Dimensional Integrated Circuits
    Henkel, Joerg
    [J]. IEEE DESIGN & TEST, 2016, 33 (02) : 4 - 6
  • [10] Methods for Three-Dimensional All-Optical Manipulation of Neural Circuits
    Ronzitti, Emiliano
    Emiliani, Valentina
    Papagiakoumou, Eirini
    [J]. FRONTIERS IN CELLULAR NEUROSCIENCE, 2018, 12