Strongly secure authenticated key exchange from factoring, codes, and lattices

被引:0
|
作者
Atsushi Fujioka
Koutarou Suzuki
Keita Xagawa
Kazuki Yoneyama
机构
[1] Kanagawa University,
[2] NTT Secure Platform Laboratories,undefined
来源
关键词
Authenticated key exchange; model; Key encapsulation mechanism; Identity-based authenticated key exchange; 94A60 Cryptography;
D O I
暂无
中图分类号
学科分类号
摘要
An unresolved problem in research on authenticated key exchange (AKE) in the public-key setting is to construct a secure protocol against advanced attacks such as key compromise impersonation and maximal exposure attacks without relying on random oracles. HMQV, a state of the art AKE protocol, achieves both efficiency and the strong security proposed by Krawczyk (we call it the CK+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CK}}^+$$\end{document} model), which includes resistance to advanced attacks. However, the security proof is given under the random oracle model. We propose a generic construction of AKE from a key encapsulation mechanism (KEM). The construction is based on a chosen-ciphertext secure KEM, and the resultant AKE protocol is CK+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CK}}^+$$\end{document} secure in the standard model. The construction gives the first CK+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CK}}^+$$\end{document} secure AKE protocols based on the hardness of integer factorization problem, code-based problems, or learning problems with errors. In addition, instantiations under the Diffie–Hellman assumption or its variant can be proved to have strong security without non-standard assumptions such as π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}PRF and KEA1. Furthermore, we extend the CK+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {CK}}^+$$\end{document} model to identity-based (called the id-CK+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {id-CK}^+}$$\end{document} model), and propose a generic construction of identity-based AKE (ID-AKE) based on identity-based KEM, which satisfies id-CK+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {id-CK}^+}$$\end{document} security. The construction leads first strongly secure ID-AKE protocols under the hardness of integer factorization problem, or learning problems with errors.
引用
收藏
页码:469 / 504
页数:35
相关论文
共 50 条
  • [1] Strongly Secure Authenticated Key Exchange from Factoring, Codes, and Lattices
    Fujioka, Atsushi
    Suzuki, Koutarou
    Xagawa, Keita
    Yoneyama, Kazuki
    PUBLIC KEY CRYPTOGRAPHY - PKC 2012, 2012, 7293 : 467 - 484
  • [2] Strongly secure authenticated key exchange from factoring, codes, and lattices
    Fujioka, Atsushi
    Suzuki, Koutarou
    Xagawa, Keita
    Yoneyama, Kazuki
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 76 (03) : 469 - 504
  • [3] Strongly Secure Authenticated Key Exchange from Supersingular Isogenies
    Xu, Xiu
    Xue, Haiyang
    Wang, Kunpeng
    Au, Man Ho
    Tian, Song
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2019, PT I, 2019, 11921 : 278 - 308
  • [4] Cryptanalysis of a strongly secure authenticated key exchange protocol
    PLA Information Engineering University, Zhengzhou 450002, China
    不详
    Dianzi Yu Xinxi Xuebao, 2013, 9 (2278-2282):
  • [5] A New Strongly Secure Authenticated Key Exchange Protocol
    Cheng, Qingfeng
    Ma, Chuangui
    Hu, Xuexian
    ADVANCES IN INFORMATION SECURITY AND ASSURANCE, 2009, 5576 : 135 - 144
  • [6] Strongly Secure Authenticated Key Exchange without NAXOS' Approach
    Kim, Minkyu
    Fujioka, Atsushi
    Ustaoglu, Berkant
    ADVANCES IN INFORMATION AND COMPUTER SECURITY, PROCEEDINGS, 2009, 5824 : 174 - +
  • [7] A New Efficient and Strongly Secure Authenticated Key Exchange Protocol
    Cheng, Qingfeng
    Han, Guangguo
    Ma, Chuangui
    FIFTH INTERNATIONAL CONFERENCE ON INFORMATION ASSURANCE AND SECURITY, VOL 1, PROCEEDINGS, 2009, : 499 - 502
  • [8] Authenticated Key Exchange from Ideal Lattices
    Zhang, Jiang
    Zhang, Zhenfeng
    Ding, Jintai
    Snook, Michael
    Dagdelen, Oezguer
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2015, PT II, 2015, 9057 : 719 - 751
  • [9] Authenticated Key Exchange Protocols Based on Factoring Assumption
    Huang, Hai
    PROVABLE SECURITY, 7TH INTERNATIONAL CONFERENCE, PROVSEC 2013, 2013, 8209 : 21 - 37
  • [10] A strongly secure identity-based authenticated group key exchange protocol
    TENG JiKai
    WU ChuanKun
    TANG ChunMing
    TIAN YouLiang
    ScienceChina(InformationSciences), 2015, 58 (09) : 98 - 109