Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions

被引:0
|
作者
M. Gubinelli
B. Ugurcan
I. Zachhuber
机构
[1] Universität Bonn,Hausdorff Center for Mathematics and Institut fur Angewandte Mathematik
关键词
Evolution equations; Anderson Hamiltonian; White noise;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze nonlinear Schrödinger and wave equations whose linear part is given by the renormalized Anderson Hamiltonian in two and three dimensional periodic domains.
引用
收藏
页码:82 / 149
页数:67
相关论文
共 50 条
  • [1] Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions
    Gubinelli, M.
    Ugurcan, B.
    Zachhuber, I.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2020, 8 (01): : 82 - 149
  • [2] Semilinear elliptic equations on annuli in three and higher dimensions
    Mizoguchi, N
    Suzuki, T
    HOUSTON JOURNAL OF MATHEMATICS, 1996, 22 (01): : 199 - 215
  • [3] ASYMPTOTICS OF THE EIGENVALUES OF THE ANDERSON HAMILTONIAN WITH WHITE NOISE POTENTIAL IN TWO DIMENSIONS
    Chouk, Khalil
    van Zuijlen, Willem
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1917 - 1964
  • [4] FLOW EQUATIONS FOR THE ANDERSON HAMILTONIAN
    KEHREIN, SK
    MIELKE, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (12): : 4259 - 4279
  • [5] The asymptotic theory for semilinear wave equations in two space dimensions
    Tan, XK
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS AND COMPUTATIONAL SIMULATIONS, 2000, : 311 - 315
  • [6] On semilinear Tricomi equations with critical exponents or in two space dimensions
    He, Daoyin
    Witt, Ingo
    Yin, Huicheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) : 8102 - 8137
  • [7] Remarks on weaker null conditions for two kinds of systems of semilinear wave equations in three space dimensions
    Cheng, Minggang
    Katayama, Soichiro
    HOKKAIDO MATHEMATICAL JOURNAL, 2024, 53 (01) : 139 - 174
  • [8] Detecting Topological Transitions in Two Dimensions by Hamiltonian Evolution
    Zhang, Wei-Wei
    Sanders, Barry C.
    Apers, Simon
    Goyal, Sandeep K.
    Feder, David L.
    PHYSICAL REVIEW LETTERS, 2017, 119 (19)
  • [9] Initial value problem of semilinear wave equations in three space dimensions
    Hidano, K
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (05) : 941 - 970
  • [10] Initial value problem of semilinear wave equations in three space dimensions
    Department of Mathematics, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169, Japan
    Nonlinear Anal Theory Methods Appl, 5 (941-970):