Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India

被引:0
|
作者
B. Ravindra
N. Subba Rao
E. N. Dhanamjaya Rao
机构
[1] Andhra University,Department of Geology
关键词
Groundwater; Water pollution index; Cluster analysis; Water quality index; Potability; Brackish water; Anthropogenic sources;
D O I
暂无
中图分类号
学科分类号
摘要
Assessment of pollutants and groundwater quality has attracted much attention worldwide as it is directly linked to human health. In view of this, groundwater samples were collected from a part of Guntur district, Andhra Pradesh, India, to assess groundwater pollution levels and groundwater quality, using Water Pollution Index (WPI) and Water Quality Index (WQI), respectively. Groundwater chemical composition results indicated that groundwater quality was characterized by alkaline and very hard categories with Na+ > Mg2+ > Ca2+ > K+: HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} > Cl -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} > SO42-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} > NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} > F -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} facies. TDS, TH, Ca2+, Mg2+, Na+, K+, HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}, Cl -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}, NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}, and F -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} were above the recommended threshold limits in 100%, 100%, 35%, 100%, 100%, 100%, 100%, 95%, 85%, and 75% of groundwater samples, respectively, for drinking purposes. The geochemical diagram showed base exchange water type (Na+–HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}) in 50% of groundwater samples resulting from weathering and dissolution of plagioclase feldspars under the influence of soil CO2 and ion exchange process. The remaining groundwater samples showed saline water type (Na+–Cl -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}) due to the influence of evaporation, sewage sludge, septic tank leaks, irrigation-return flows, agrochemicals, etc. Ionic relationships of Ca2+/Na+vs HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}/Na+, Ca2+/Na+vs Mg2+/Na+, higher Na+ than Ca2+, and occurrence of CaCO3 concretions further supported geogenic processes that alter groundwater chemistry. The positive linear trend of TDS vs Cl -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} + NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}/HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} and the relationship of TDS with TH showed anthropogenic input as the main factor, causing groundwater contamination. The WPI indicated two categories of water quality: moderately polluted water (WPI: 0.75–1.00) and highly polluted water (WPI: > 1.00) in 60% and 40% of groundwater samples, which were 81.49% and 18.51% of the study area, respectively. Hierarchical cluster analysis identified three clusters: Cluster I (pH, F -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}, Ca2+, K+, NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}, Na+, and SO42−), Cluster II (TH, Mg2+, Cl -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}, and HCO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}), and Cluster III (TDS) support WPI. Following WQI, 75% and 25% of groundwater samples fell under poor groundwater quality type (WQI: 100–200) and very poor groundwater quality type (> 200), respectively, especially due to the increased concentrations of Mg2+, Na+, K+, HCO32−, Cl -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}, NO3-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document}, and F -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{ - }$$\end{document} ions, thereby increasing salinity (TDS) and hardness (TH) in groundwater. Spatially, they covered 85.84% and 14.06% of the study area. The quality of this groundwater is not suitable for drinking purposes. Therefore, the present study suggests preventive measures (safe drinking water supply, desalinization, defluoridation, denitrification, calcium food, and rainwater harvesting) to protect human health.
引用
收藏
页码:14785 / 14815
页数:30
相关论文
共 50 条
  • [1] Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India
    Ravindra, B.
    Rao, N. Subba
    Rao, E. N. Dhanamjaya
    [J]. ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2023, 25 (12) : 14785 - 14815
  • [2] Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India
    Subba Rao, N
    [J]. ENVIRONMENTAL GEOLOGY, 2006, 49 (03): : 413 - 429
  • [3] Groundwater quality from a part of Prakasam District, Andhra Pradesh, India
    Rao, N. Subba
    [J]. APPLIED WATER SCIENCE, 2018, 8 (01)
  • [4] Groundwater quality from a part of Prakasam District, Andhra Pradesh, India
    N. Subba Rao
    [J]. Applied Water Science, 2018, 8
  • [5] Groundwater quality: focus on fluoride concentration in rural parts of Guntur district, Andhra Pradesh, India
    Rao, NS
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2003, 48 (05): : 835 - 847
  • [6] Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India
    N. Subba Rao
    A. Subrahmanyam
    S. Ravi Kumar
    N. Srinivasulu
    G. Babu Rao
    P. Surya Rao
    G. Venkatram Reddy
    [J]. Environmental Earth Sciences, 2012, 67 : 1451 - 1471
  • [7] Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India
    Rao, N. Subba
    Subrahmanyam, A.
    Kumar, S. Ravi
    Srinivasulu, N.
    Rao, G. Babu
    Rao, P. Surya
    Reddy, G. Venkatram
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2012, 67 (05) : 1451 - 1471
  • [8] Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India
    N. Subba Rao
    Deepali Marghade
    A. Dinakar
    I. Chandana
    B. Sunitha
    B. Ravindra
    T. Balaji
    [J]. Environmental Earth Sciences, 2017, 76
  • [9] Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India
    Rao, N. Subba
    Marghade, Deepali
    Dinakar, A.
    Chandana, I.
    Sunitha, B.
    Ravindra, B.
    Balaji, T.
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (21)
  • [10] Assessment of groundwater quality for irrigation: A case study from bandalamottu lead mining area, Guntur district, Andhra Pradesh, south India
    Nagaraju A.
    Sunil Kumar K.
    Thejaswi A.
    [J]. Applied Water Science, 2014, 4 (4) : 385 - 396