“Quantizations” of higher Hamiltonian analogues of the Painlevé I and Painlevé II equations with two degrees of freedom

被引:0
|
作者
B. I. Suleimanov
机构
[1] Russian Academy of Sciences,Institute of Mathematics and Computer Center, Ufa Scientific Center
关键词
quantization; Schrödinger equation; Hamiltonian; Painlevé equations; isomonodromic deformations; integrability;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a solution of an analogue of the Schrödinger equation for the Hamiltonian H1(z, t, q1, q2, p1, p2) corresponding to the second equation P12 in the Painlevé I hierarchy. This solution is obtained by an explicit change of variables from a solution of systems of linear equations whose compatibility condition is the ordinary differential equation P12 with respect to z. This solution also satisfies an analogue of the Schrödinger equation corresponding to the Hamiltonian H2(z, t, q1, q2, p1, p2) of a Hamiltonian system with respect to t compatible with P12. A similar situation occurs for the P22 equation in the Painlevé II hierarchy.
引用
收藏
页码:198 / 207
页数:9
相关论文
共 50 条
  • [1] "Quantizations" of higher Hamiltonian analogues of the Painlev, I and Painlev, II equations with two degrees of freedom
    Suleimanov, B. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2014, 48 (03) : 198 - 207
  • [2] An elementary and direct proof of the Painlevé property for the Painlevé equations I, II and IV
    Jishan Hu
    Min Yan
    Journal d’Analyse Mathématique, 2003, 91 : 105 - 121
  • [3] On Painlevé's equations I, II and IV
    Norbert Steinmetz
    Journal d’Analyse Mathématique, 2000, 82 : 363 - 377
  • [4] Matrix Painlevé II equations
    V. E. Adler
    V. V. Sokolov
    Theoretical and Mathematical Physics, 2021, 207 : 560 - 571
  • [5] On Hamiltonian structures of quasi-Painlevé equations
    Filipuk, Galina
    Stokes, Alexander
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (49)
  • [6] Numerical solution of the Cauchy problem for the Painlevé I and II equations
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2012, 52 : 321 - 329
  • [7] On the Darboux integrability of the Painlevé II equations
    Jaume Llibre
    Claudia Valls
    Journal of Nonlinear Mathematical Physics, 2015, 22 : 60 - 75
  • [8] On the Theory of Higher-Order Painlevé Equations
    V. I. Gromak
    A. S. Zenchenko
    Differential Equations, 2004, 40 : 625 - 633
  • [9] Painlevé Test and Higher Order Differential Equations
    Uğurhan Muğan
    Fahd Jrad
    Journal of Nonlinear Mathematical Physics, 2002, 9 : 282 - 310
  • [10] Quantum Painlevé Second Lax Pair and Quantum (Matrix) Analogues of Classical Painlevé II Equation
    Waseem, Muhammad
    Mahmood, Irfan
    Sohail, Hira
    Hussain, Ejaz
    Elansary, Hosam O.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (05)